163 research outputs found

    Filamentary Star Formation: Observing the Evolution toward Flattened Envelopes

    Full text link
    Filamentary structures are ubiquitous from large-scale molecular clouds (few parsecs) to small-scale circumstellar envelopes around Class 0 sources (~1000 AU to ~0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (few parsecs) and star formation. The small-scale flattened envelopes around Class 0 sources are reminiscent of the large-scale filaments. We propose an observationally derived scenario for filamentary star formation that describes the evolution of filaments as part of the process for formation of cores and circumstellar envelopes. If such a scenario is correct, small-scale filamentary structures (0.1 pc in length) with higher densities embedded in starless cores should exist, although to date almost all the interferometers have failed to observe such structures. We perform synthetic observations of filaments at the prestellar stage by modeling the known Class 0 flattened envelope in L1157 using both the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). We show that with reasonable estimates for the column density through the flattened envelope, the CARMA D-array at 3mm wavelengths is not able to detect such filamentary structure, so previous studies would not have detected them. However, the substructures may be detected with CARMA D+E array at 3 mm and CARMA E array at 1 mm as a result of more appropriate resolution and sensitivity. ALMA is also capable of detecting the substructures and showing the structures in detail compared to the CARMA results with its unprecedented sensitivity. Such detection will confirm the new proposed paradigm of non-spherical star formation.Comment: 9 pages, 10 figures. Accepted by Ap

    Steady Wind-blown Cavities within Infalling Rotating Envelopes:Application to the Broad Velocity Component in Young Protostars

    Get PDF
    Wind-driven outflows are observed around a broad range of accreting objects throughout the Universe, ranging from forming low-mass stars to super-massive black holes. We study the interaction between a central isotropic wind and an infalling, rotating, envelope, determining the steady-state cavity shape formed at their interface under the assumption of weak mixing. The shape of the resulting wind-blown cavity is elongated and self-similar, with a physical size determined by the ratio between wind ram pressure and envelope thermal pressure. We compute the growth of a warm turbulent mixing-layer between the shocked wind and the deflected envelope, and calculate the resultant broad line profile, under the assumption of a linear (Couette-type) velocity profile across the layer. We then test our model against the warm broad velocity component observed in CO JJ=16--15 by Herschel/HIFI in the protostar Serpens-Main SMM1. Given independent observational constraints on the temperature and density of the dust envelope around SMM1, we find an excellent match to all its observed properties (line profile, momentum, temperature) and to the SMM1 outflow cavity width for a physically reasonable set of parameters: a ratio of wind to infall mass-flux ‚ČÉ4%\simeq 4\%, a wind speed vw‚ČÉ30v_{\rm w} \simeq 30 km/s, an interstellar abundance of CO and H2_2, and a turbulent entrainment efficiency consistent with laboratory experiments. The inferred ratio of ejection to disk accretion rate, ‚ČÉ6‚ąí20%\simeq 6-20\%, is in agreement with current disk wind theories. Thus, the model provides a new framework to reconcile the modest outflow cavity widths in protostars with the large observed flow velocities. Being self-similar, it is applicable over a broader range of astrophysical contexts as well.Comment: 31 pages, 21 figures, accepted to ApJ for publication (comments are welcome
    • ‚Ķ