771 research outputs found

    Empirical mode decomposition-based facial pose estimation inside video sequences

    Get PDF
    We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions

    Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications

    Get PDF
    Three-dimensional television (3D-TV) has gained increasing popularity in the broadcasting domain, as it enables enhanced viewing experiences in comparison to conventional two-dimensional (2D) TV. However, its application has been constrained due to the lack of essential contents, i.e., stereoscopic videos. To alleviate such content shortage, an economical and practical solution is to reuse the huge media resources that are available in monoscopic 2D and convert them to stereoscopic 3D. Although stereoscopic video can be generated from monoscopic sequences using depth measurements extracted from cues like focus blur, motion and size, the quality of the resulting video may be poor as such measurements are usually arbitrarily defined and appear inconsistent with the real scenes. To help solve this problem, a novel method for object-based stereoscopic video generation is proposed which features i) optical-flow based occlusion reasoning in determining depth ordinal, ii) object segmentation using improved region-growing from masks of determined depth layers, and iii) a hybrid depth estimation scheme using content-based matching (inside a small library of true stereo image pairs) and depth-ordinal based regularization. Comprehensive experiments have validated the effectiveness of our proposed 2D-to-3D conversion method in generating stereoscopic videos of consistent depth measurements for 3D-TV applications

    Hierarchical modelling and adaptive clustering for real-time summarization of rush videos

    Get PDF
    In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic

    Reliable camera motion estimation from compressed MPEG videos using machine learning approach

    Get PDF
    As an important feature in characterizing video content, camera motion has been widely applied in various multimedia and computer vision applications. A novel method for fast and reliable estimation of camera motion from MPEG videos is proposed, using support vector machine for estimation in a regression model trained on a synthesized sequence. Experiments conducted on real sequences show that the proposed method yields much improved results in estimating camera motions while the difficulty in selecting valid macroblocks and motion vectors is skipped

    CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images

    Full text link
    With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 201