4,271 research outputs found

    Disadvantages of red: The color congruence effect in comparative price advertising

    Get PDF
    Data availability statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.Supplementary material: The Supplementary material for this article can be found online at: https://www.frontiersin.org/articless/10.3389/fpsyg.2022.1019163/full#supplementary-materialCopyright © 2022 Kim and Jang. Based on the metaphorical association of color, the color red is often associated with a “hot deal” in a price promotion context, which has led to the popular use of red in promotions in the marketplace. In two studies, this research challenges the lay belief that the color red used in price advertising positively influences consumers’ perceptions of value. The findings from the two studies revealed a contrasting pattern of results depending on the depth of the discount. When the discount depth was high (consistent with consumers’ lay belief), the red color led to more favorable responses to a price promotion than other colors (white or blue in Study 1 and green in Study 2). In contrast, when the discount depth was unambiguously low, consumers who were exposed to a red colored price promotion advertisement reported a perception of a lower value compared to those who saw the same advertisement with other colors We attribute this effect to the degree of “processing fluency” that arises from the congruence between the color and promotion content. Our research adds to the existing psychology literature on color functioning by showing a match between the referential meaning of the color red (i.e., a hot deal) and consumers’ perceptions in marketing communication.Brunel University London

    UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells

    Get PDF
    The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells. © 2012 Kwon et al

    Optimal design of multi-channel microreactor for uniform residence time distribution

    Get PDF
    Multi-channel microreactors can be used for various applications that require chemical or electrochemical reactions in either liquid, gaseous or multi phase. For an optimal control of the chemical reactions, one key parameter for the design of such microreactors is the residence time distribution of the fluid, which should be as uniform as possible in the series of microchannels that make up the core of the reactor. Based on simplifying assumptions, an analytical model is proposed for optimizing the design of the collecting and distributing channels which supply the series of rectangular microchannels of the reactor, in the case of liquid flows. The accuracy of this analytical approach is discussed after comparison with CFD simulations and hybrid analytical-CFD calculations that allow an improved refinement of the meshing in the most complex zones of the flow. The analytical model is then extended to the case of microchannels with other cross-sections (trapezoidal or circular segment) and to gaseous flows, in the continuum and slip flow regimes. In the latter case, the model is based on second-order slip flow boundary conditions, and takes into account the compressibility as well as the rarefaction of the gas flow

    Multiscale photosynthetic exciton transfer

    Full text link
    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published online by Nature Physics (2012

    Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We evaluated the long-term effect of stereotactic body radiation therapy (SBRT) for primary small hepatocellular carcinoma (HCC) ineligible for local therapy or surgery.</p> <p>Methods</p> <p>Forty-two HCC patients with tumors ≤ 100 cc and ineligible for local ablation therapy or surgical resection were treated with SBRT: 30-39 Gy with a prescription isodose range of 70-85% (median 80%) was delivered daily in three fractions. Median tumor volume was 15.4 cc (3.0-81.8) and median follow-up duration 28.7 months (8.4-49.1).</p> <p>Results</p> <p>Complete response (CR) for the in-field lesion was initially achieved in 59.6% and partial response (PR) in 26.2% of patients. Hepatic out-of-field progression occurred in 18 patients (42.9%) and distant metastasis developed in 12 (28.6%) patients. Overall in-field CR and overall CR were achieved in 59.6% and 33.3%, respectively. Overall 1-year and 3-year survival rates were 92.9% and 58.6%, respectively. In-field progression-free survival at 1 and 3 years was 72.0% and 67.5%, respectively. Patients with smaller tumor had better in-field progression-free survival and overall survival rates (<32 cc vs. ≥32 cc, <it>P </it>< 0.05). No major toxicity was encountered but one patient died with extrahepatic metastasis and radiation-induced hepatic failure.</p> <p>Conclusions</p> <p>SBRT is a promising noninvasive-treatment for small HCC that is ineligible for local treatment or surgical resection.</p

    Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using Tc-99m-HMPAO

    Get PDF
    Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived exosome-mimetic nanovesicles (ENVs) with Tc-99m-HMPAO under physiologic conditions and monitored in vivo distribution of Tc-99m-HMPAO-ENVs using SPECT/CT in living mice. ENVs were produced from the mouse RAW264.7 macrophage cell line and labeled with Tc-99m-HMPAO for 1 hr incubation, followed by removal of free Tc-99m-HMPAO. SPECT/CT images were serially acquired after intravenous injection to BALB/c mouse. When ENVs were labeled with Tc-99m-HMPAO, the radiochemical purity of Tc-99m-HMPAO-ENVs was higher than 90% and the expression of exosome specific protein (CD63) did not change in Tc-99m-HMPAO-ENVs. Tc-99m-HMPAOENVs showed high serum stability (90%) which was similar to that in phosphate buffered saline until 5 hr. SPECT/CT images of the mice injected with Tc-99m-HMPAO-ENVs exhibited higher uptake in liver and no uptake in brain, whereas mice injected with Tc-99m-HMPAO showed high brain uptake until 5 hr. Our noninvasive imaging of radiolabeled-ENVs promises better understanding of the in vivo behavior of exosomes for upcoming biomedical application.114327Ysciescopu

    Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot phototransistors

    Get PDF
    Phototransistors that are based on a hybrid vertical heterojunction structure of two-dimensional (2D)/quantum dots (QDs) have recently attracted attention as a promising device architecture for enhancing the quantum efficiency of photodetectors. However, to optimize the device structure to allow for more efficient charge separation and transfer to the electrodes, a better understanding of the photophysical mechanisms that take place in these architectures is required. Here, we employ a novel concept involving the modulation of the built-in potential within the QD layers for creating a new hybrid MoS2/PbS QDs phototransistor with consecutive type II junctions. The effects of the built-in potential across the depletion region near the type II junction interface in the QD layers are found to improve the photoresponse as well as decrease the response times to 950 μs, which is the faster response time (by orders of magnitude) than that recorded for previously reported 2D/QD phototransistors. Also, by implementing an electric-field modulation of the MoS2 channel, our experimental results reveal that the detectivity can be as large as 1 × 1011 jones. This work demonstrates an important pathway toward designing hybrid phototransistors and mixed-dimensional van der Waals heterostructures
    corecore