49,544 research outputs found

    Laboratory measurements of the cometary photochemical phenomena

    Get PDF
    Laboratory experiments are described that provide fundamental information about photochemical processes in comets. The yield of cometary radicals such as CN, OH, etc. can be determined as a function of photolyzing wavelength. Quantum state distributions of the internal energy of the cometary radicals can also be measured as a function of wavelength permitting one to define the recoil velocity of the fragments. This type of information supplies the data needed for more elaborate models to interpret the data being obtained on comets

    Laboratory observations of the photochemistry of parent molecules: A review

    Get PDF
    The photochemistry of possible parent molecules of comets has been reviewed. Quantum yields for many of the primary processes are unknown. Energy partitioning among the fragments has not been extensively investigated. A few of the studies have been performed as a function of the number of collisions that the excited molecules undergo, so that possible differences that may occur in a cometary environment may be ascertained

    Geometry and seismic properties of the subducting Cocos plate in central Mexico

    Get PDF
    The geometry and properties of the interface of the Cocos plate beneath central Mexico are determined from the receiver functions (RFs) utilizing data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is shallowly dipping to the north at 15° for 80 km from Acapulco and then horizontally underplates the continental crust for approximately 200 km to the Trans-Mexican Volcanic Belt (TMVB). The crustal image also shows that there is no continental root associated with the TMVB. The migrated image of the RFs shows that the slab is steeply dipping into the mantle at about 75° beneath the TMVB. Both the continental and oceanic Moho are clearly seen in both images, and modeling of the RF conversion amplitudes and timings of the underplated features reveals a thin low-velocity zone between the plate and the continental crust that appears to absorb nearly all of the strain between the upper plate and the slab. By inverting RF amplitudes of the converted phases and their time separations, we produce detailed maps of the seismic properties of the upper and lower oceanic crust of the subducting Cocos plate and its thickness. High Poisson's and Vp/Vs ratios due to anomalously low S wave velocity at the upper oceanic crust in the flat slab region may indicate the presence of water and hydrous minerals or high pore pressure. The evidence of high water content within the oceanic crust explains the flat subduction geometry without strong coupling of two plates. This may also explain the nonvolcanic tremor activity and slow slip events occurring in the subducting plate and the overlying crust

    Laboratory studies of photodissociation processes relevant to the formation of cometary radicals

    Get PDF
    The strength of the C2(d 3 Pi g yields a 3 Pi u) Swan band emission in the spectra of cometary comae identifies this species as a prominent constituent of the coma gas. It was previously suggested that the formation of cometary C2 proceeds via the secondary photolysis of the C2H radical. The detection of C2H in the interstellar medium and the recent analysis of the radial variation in C2(delta V=O) surface brightness of Comet Halley support the postulate that C2 is a third-generation molecule. Measurement of the C2 and C2H translational energy distributions produced from the multiphoton dissociation (MPD) of acetylene at 193 nm are identified . Time-resolved FTIR emission studies of the nascent C2H radical formed in the C2H2 yields C2H + H reaction verify that this species is produced both vibrationally and electronically excited. A survey of the internal energy distributions of the C2 fragments produced from the MPD of acetylene using a high intensity ArF laser is currently in progress in the laboratory. Recent experiments have focused on the measurement of rotational energy distribution for the C2(A 1 Pi u, a 3 Pi u) fragments. The C2(a 3 Pi u) detection capability is currently being improved by performing this experiment in a molecular beam, thus allowing for discrimination between initial emission and laser-induced fluorescence (LIF). Although the experiments performed to date provide considerable evidence in support of C2H yields C2 + H reaction, there is an important distinction to be made when comparing the laboratory conditions to those typically found in comets. The C2H radicals generated in the laboratory experiments are formed vibrationally and/or electronically excited. Any rotationally/vibrationally excited C2H present in cometary comae will quickly undergo radiative relaxation in the infrared to their lowest rotational and vibrational state. Experiments are currently under way to confirm the cometary formation of C2 via the VUV dissociation of cold C2H

    Theoretical pressure distributions over arbitrarily shaped periodic waves in subsonic compressible flow and comparison with experiment

    Get PDF
    Theoretical solution for pressure distribution over arbitrarily shaped periodic waves using Fourier serie

    Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region

    Get PDF
    The sound velocities of (Mg_(.16)Fe_(.84))O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Mössbauer spectroscopy. We found the sound velocities of (Mg_(.16)Fe_(.84))O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary

    Resolving the structure of TiBe12_{12}

    Get PDF
    There has been considerable controversy regarding the structure of TiBe12_{12}, which is variously reported as hexagonal and tetragonal. Lattice dynamics simulations based on density functional theory show the tetragonal phase space group I4/mmmI4/mmm to be more stable over all temperatures, while the hexagonal phase exhibits an imaginary phonon mode, which, if followed, would lead to the cell adopting the tetragonal structure. We then report the predicted ground state elastic constants and temperature dependence of the bulk modulus and thermal expansion for the tetragonal phase.Comment: In press at Acta Crystallographica B. Supplementary material appende

    Radio detection of H2O in comet Bradfield (1974b)

    Get PDF
    Results of observations of comet Bradfield using the Haystack telescope are summarized with emphasis on the detection of the 1.35 cm emission line of water in the comet. The excitation of water and methyl cyanide in comets is briefly considered

    Finding the Pion in the Chiral Random Matrix Vacuum

    Get PDF
    The existence of a Goldstone boson is demonstrated in chiral random matrix theory. After determining the effective coupling and calculating the scalar and pseudoscalar propagators, a random phase approximation summation reveals the massless pion and massive sigma modes expected whenever chiral symmetry is spontaneously broken.Comment: 3 pages, 1 figure, revte

    Description and calibration of the Langley unitary plan wind tunnel

    Get PDF
    The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed
    • 

    corecore