223 research outputs found

### Translucent Players: Explaining Cooperative Behavior in Social Dilemmas

In the last few decades, numerous experiments have shown that humans do not always behave so as to maximize their material payoff. Cooperative behavior when non-cooperation is a dominant strategy (with respect to the material payoffs) is particularly puzzling. Here we propose a novel approach to explain cooperation, assuming what Halpern and Pass (2013) call "translucent players". Typically, players are assumed to be "opaque", in the sense that a deviation by one player does not affect the strategies used by other players. But a player may believe that if he switches from one strategy to another, the fact that he chooses to switch may be visible to the other players. For example, if he chooses to defect in Prisoner's Dilemma, the other player may sense his guilt. We show that by assuming translucent players, we can recover many of the regularities observed in human behavior in well-studied games such as Prisoner's Dilemma, Traveler's Dilemma, Bertrand Competition, and the Public Goods game

### Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic

Autonomous critical systems, such as satellites and space rovers, must be
able to detect the occurrence of faults in order to ensure correct operation.
This task is carried out by Fault Detection and Identification (FDI)
components, that are embedded in those systems and are in charge of detecting
faults in an automated and timely manner by reading data from sensors and
triggering predefined alarms. The design of effective FDI components is an
extremely hard problem, also due to the lack of a complete theoretical
foundation, and of precise specification and validation techniques. In this
paper, we present the first formal approach to the design of FDI components for
discrete event systems, both in a synchronous and asynchronous setting. We
propose a logical language for the specification of FDI requirements that
accounts for a wide class of practical cases, and includes novel aspects such
as maximality and trace-diagnosability. The language is equipped with a clear
semantics based on temporal epistemic logic, and is proved to enjoy suitable
properties. We discuss how to validate the requirements and how to verify that
a given FDI component satisfies them. We propose an algorithm for the synthesis
of correct-by-construction FDI components, and report on the applicability of
the design approach on an industrial case-study coming from aerospace.Comment: 33 pages, 20 figure

### Trust in Crowds: probabilistic behaviour in anonymity protocols

The existing analysis of the Crowds anonymity protocol assumes that a participating member is either â€˜honestâ€™ or â€˜corruptedâ€™. This paper generalises this analysis so that each member is assumed to maliciously disclose the identity of other nodes with a probability determined by her vulnerability to corruption. Within this model, the trust in a principal is defined to be the probability that she behaves honestly. We investigate the effect of such a probabilistic behaviour on the anonymity of the principals participating in the protocol, and formulate the necessary conditions to achieve â€˜probable innocenceâ€™. Using these conditions, we propose a generalised Crowds-Trust protocol which uses trust information to achieves â€˜probable innocenceâ€™ for principals exhibiting probabilistic behaviour

### Singularities in the Kerr-Newman and charged $\delta=2$ Tomimatsu-Sato spacetimes endowed with negative mass

The Kerr-Newman solution with negative mass is shown to develop a massless
ring singularity off the symmetry axis. The singularity is located inside the
region with closed timelike curves which has topology of a torus and lies
outside the ergoregion. These characteristics are also shared by the charged
Tomimatsu-Sato delta=2 solution with negative total mass to which in particular
a simple form in terms of four polynomials is provided.Comment: 10 pages, 7 figures; hyperextreme case included, one reference adde

### Does Treewidth Help in Modal Satisfiability?

Many tractable algorithms for solving the Constraint Satisfaction Problem
(CSP) have been developed using the notion of the treewidth of some graph
derived from the input CSP instance. In particular, the incidence graph of the
CSP instance is one such graph. We introduce the notion of an incidence graph
for modal logic formulae in a certain normal form. We investigate the
parameterized complexity of modal satisfiability with the modal depth of the
formula and the treewidth of the incidence graph as parameters. For various
combinations of Euclidean, reflexive, symmetric and transitive models, we show
either that modal satisfiability is FPT, or that it is W[1]-hard. In
particular, modal satisfiability in general models is FPT, while it is
W[1]-hard in transitive models. As might be expected, modal satisfiability in
transitive and Euclidean models is FPT.Comment: Full version of the paper appearing in MFCS 2010. Change from v1:
improved section 5 to avoid exponential blow-up in formula siz

### Common knowledge and state-dependent equilibria

Many puzzling social behaviors, such as avoiding eye contact, using innuendos, and insignificant events that trigger revolutions, seem to relate to common knowledge and coordination, but the exact relationship has yet to be formalized. Herein, we present such a formalization. We state necessary and sufficient conditions for what we call state-dependent equilibria - equilibria where players play different strategies in different states of the world. In particular, if everybody behaves a certain way (e.g. does not revolt) in the usual state of the world, then in order for players to be able to behave a different way (e.g. revolt) in another state of the world, it is both necessary and sufficient for it to be common p-believed that it is not the usual state of the world, where common p-belief is a relaxation of common knowledge introduced by Monderer and Samet [16]. Our framework applies to many player r-coordination games - a generalization of coordination games that we introduce - and common (r,p)-beliefs - a generalization of common p-beliefs that we introduce. We then apply these theorems to two particular signaling structures to obtain novel results. Â© 2012 Springer-Verlag

### An Epistemic Perspective on Consistency of Concurrent Computations

Consistency properties of concurrent computations, e.g., sequential
consistency, linearizability, or eventual consistency, are essential for
devising correct concurrent algorithms. In this paper, we present a logical
formalization of such consistency properties that is based on a standard logic
of knowledge. Our formalization provides a declarative perspective on what is
imposed by consistency requirements and provides some interesting unifying
insight on differently looking properties

### Causality and the semantics of provenance

Provenance, or information about the sources, derivation, custody or history
of data, has been studied recently in a number of contexts, including
databases, scientific workflows and the Semantic Web. Many provenance
mechanisms have been developed, motivated by informal notions such as
influence, dependence, explanation and causality. However, there has been
little study of whether these mechanisms formally satisfy appropriate policies
or even how to formalize relevant motivating concepts such as causality. We
contend that mathematical models of these concepts are needed to justify and
compare provenance techniques. In this paper we review a theory of causality
based on structural models that has been developed in artificial intelligence,
and describe work in progress on a causal semantics for provenance graphs.Comment: Workshop submissio

### An Optimal Self-Stabilizing Firing Squad

Consider a fully connected network where up to $t$ processes may crash, and
all processes start in an arbitrary memory state. The self-stabilizing firing
squad problem consists of eventually guaranteeing simultaneous response to an
external input. This is modeled by requiring that the non-crashed processes
"fire" simultaneously if some correct process received an external "GO" input,
and that they only fire as a response to some process receiving such an input.
This paper presents FireAlg, the first self-stabilizing firing squad algorithm.
The FireAlg algorithm is optimal in two respects: (a) Once the algorithm is
in a safe state, it fires in response to a GO input as fast as any other
algorithm does, and (b) Starting from an arbitrary state, it converges to a
safe state as fast as any other algorithm does.Comment: Shorter version to appear in SSS0

- â€¦