4,313 research outputs found

### Expectations for first single-top studies in CMS proton-proton collisions

We report on the expectations for first single top studies at the LHC with the CMS experiment. The Standard Model predicts the production of single top quark through three electroweak processes at LHC, referred to as t, s and tW
channels. The t-channel has the highest cross section and the most potential for early observation. We describe the search strategy for the t-channel applied on a Monte Carlo sample at 10TeV p-p collision energy with an integrated luminosity of 200 pbâ1 and on the expectations for the search of single top t-channel in the 7TeV scenario

### The search for the single top at the LHC

We report on the predictions of the Standard Model for the single top-quark production at LHC and on the analysis strategies adopted by CMS and ATLAS for the single top-quark search. The Standard Model predicts the production
of single top quark through three electroweak processes in the LHC energy reach, referred to as t, s and tW channels, resulting in distinct topologies and backgrounds. Different analysis strategies to search for the single top have been developed by CMS and ATLAS experiments. For the 14TeV center-of-mass energy scenario all the channels have been considered, while for the 10TeV scenario a specific strategy
has been developed only for the t-channel and has been applied on Monte Carlo samples assuming an integrated luminosity of 200 pbâ1

### Gravitomagnetism and the Speed of Gravity

Experimental discovery of the gravitomagnetic fields generated by
translational and/or rotational currents of matter is one of primary goals of
modern gravitational physics. The rotational (intrinsic) gravitomagnetic field
of the Earth is currently measured by the Gravity Probe B. The present paper
makes use of a parametrized post-Newtonian (PN) expansion of the Einstein
equations to demonstrate how the extrinsic gravitomagnetic field generated by
the translational current of matter can be measured by observing the
relativistic time delay caused by a moving gravitational lens. We prove that
measuring the extrinsic gravitomagnetic field is equivalent to testing
relativistic effect of the aberration of gravity caused by the Lorentz
transformation of the gravitational field. We unfold that the recent Jovian
deflection experiment is a null-type experiment testing the Lorentz invariance
of the gravitational field (aberration of gravity), thus, confirming existence
of the extrinsic gravitomagnetic field associated with orbital motion of
Jupiter with accuracy 20%. We comment on erroneous interpretations of the
Jovian deflection experiment given by a number of researchers who are not
familiar with modern VLBI technique and subtleties of JPL ephemeris. We propose
to measure the aberration of gravity effect more accurately by observing
gravitational deflection of light by the Sun and processing VLBI observations
in the geocentric frame with respect to which the Sun is moving with velocity
30 km/s.Comment: 16 pages, no figure

### Phenomenology of the Lense-Thirring effect in the Solar System

Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde

### Mass Screening in Modified Gravity

Models of modified gravity introduce extra degrees of freedom, which for
consistency with the data, should be suppressed at observable scales. In the
models that share properties of massive gravity such a suppression is due to
nonlinear interactions: An isolated massive astrophysical object creates a halo
of a nonzero curvature around it, shielding its vicinity from the influence of
the extra degrees of freedom. We emphasize that the very same halo leads to a
screening of the gravitational mass of the object, as seen by an observer
beyond the halo. We discuss the case when the screening could be very
significant and may rule out, or render the models observationally interesting.Comment: 16 pages, 4 figures, A contribution to the Proceedings of the
International Workshop on Cosmology and Gravitation, Peyresq 12, June 16-22,
2007, Peyresq, Franc

### Gravitomagnetism and Relative Observer Clock Effects

The gravitomagnetic clock effect and the Sagnac effect for circularly
rotating orbits in stationary axisymmetric spacetimes are studied from a
relative observer point of view, clarifying their relationships and the roles
played by special observer families. In particular Semer\'ak's recent
characterization of extremely accelerated observers in terms of the two-clock
clock effect is shown to be complemented by a similarly special property of the
single-clock clock effect.Comment: 19 pages, LaTeX, IOP macros with package epsf and 1 eps figure, to
appear in Classical and Quantum Gravity, slight revisio

### Efficacy of hemostatic powders as monotherapy or rescue therapy in gastrointestinal bleeding related to neoplastic or non-neoplastic lesions

Background Hemostatic powder (HP) in gastrointestinal bleeding (GIB) is mainly used as rescue therapy after failure of conventional hemostatic procedures (CHP). Aim To define the best field of application and the efficacy of HP as first choice monotherapy or rescue therapy. Methods We compared the efficacy of HP monotherapy, HP rescue therapy, and CHP in the management of active GIB due to neoplastic and non-neoplastic lesions. Results A total of 108 patients, 43 treated with HP as either first choice or rescue therapy and 65 with CHP, were included in the study. The most frequent sources of bleeding were peptic ulcer and malignancy. Immediate hemostasis rates were: HP monotherapy = 100% in peptic ulcer and 100% in malignancy; HP rescue therapy = 93.2% in peptic ulcer and 85.7% in malignancy; CHP = 77.9% in peptic ulcer and 41.7 in malignancy. Definitive hemostasis rates were: HP monotherapy = 50% in peptic ulcer and 45.5% in malignancy; HP rescue therapy = 73.3% in peptic ulcer and 85.7% in malignancy; CHP = 69.1% in peptic ulcer and 33.3% in malignancy. No difference was found in terms of additional intervention between the three groups. Conclusions HP is highly effective as monotherapy and rescue therapy in GIB. GIB related to malignancy may be the best field of application of HP, but confirmatory studies are necessary

### Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology

It has been recently suggested by Dvali and Vikman that the superluminal
neutrino phenomenology of the OPERA experiment may be due to an environmental
feature of the Earth, naturally yielding a long-range fifth force of
gravitational origin whose coupling with the neutrino is set by the scale M_*,
in units of reduced Planck mass. Its characteristic length lambda should not be
smaller than one Earth's radius R_e, while its upper bound is expected to be
slightly smaller than the Earth-Moon distance (60 R_e). We analytically work
out some orbital effects of a Yukawa-type fifth force for a test particle
moving in the modified field of a central body. Our results are quite general
since they are not restricted to any particular size of lambda; moreover, they
are valid for an arbitrary orbital configuration of the particle, i.e. for any
value of its eccentricity $e$. We find that the dimensionless strength coupling
parameter alpha is constrained to |alpha| <= 1 10^-10-4 10^-9 for 1 R_e <=
lambda <= 10 R_e by the laser data of the Earth's artificial satellite LAGEOS
II, corresponding to M_* >= 4 10^9 -1.6 10^10. The Moon perigee allows to
obtain |alpha| <= 3 10^-11 for the Earth-Moon pair in the range 15 R_e <=
lambda = 3 10^10 - 4.5 10^10. Our results
are neither necessarily limited to the superluminal OPERA scenario nor to the
Dvali-Vikman model, in which it is M_* = 10^-6 at lambda = 1 R_e, in contrast
with our bounds: they generally extend to any theoretical scenario implying a
fifth-force of Yukawa-type.Comment: LaTex2e, 18 pages, 4 figures, 1 table, 81 reference

### Milky Way Mass Models and MOND

Using the Tuorla-Heidelberg model for the mass distribution of the Milky Way,
I determine the rotation curve predicted by MOND. The result is in good
agreement with the observed terminal velocities interior to the solar radius
and with estimates of the Galaxy's rotation curve exterior thereto. There are
no fit parameters: given the mass distribution, MOND provides a good match to
the rotation curve. The Tuorla-Heidelberg model does allow for a variety of
exponential scale lengths; MOND prefers short scale lengths in the range 2.0 to
2.5 kpc. The favored value of scale length depends somewhat on the choice of
interpolation function. There is some preference for the `simple' interpolation
function as found by Famaey & Binney. I introduce an interpolation function
that shares the advantages of the simple function on galaxy scales while having
a much smaller impact in the solar system. I also solve the inverse problem,
inferring the surface mass density distribution of the Milky Way from the
terminal velocities. The result is a Galaxy with `bumps and wiggles' in both
its luminosity profile and rotation curve that are reminiscent of those
frequently observed in external galaxies.Comment: Accepted for publication in the Astrophysical Journal. 31 pages
including 8 figures and 3 table

- âŠ