2 research outputs found

    Intake of Natural Compounds and Circulating microRNA Expression Levels: Their Relationship Investigated in Healthy Subjects With Different Dietary Habits

    Get PDF
    Diet has a strong influence on many physiological processes, which in turn have important implications on a variety of pathological conditions. In this respect, microRNAs (miRNAs), a class of small non-coding RNAs playing a relevant epigenetic role in controlling gene expression, may represent mediators between the dietary intake and the healthy status. Despite great advances in the field of nutri-epigenomics, it remains unclear how miRNA expression is modulated by the diet and, specifically, the intake of specific nutrients. We investigated the whole circulating miRNome by small RNA-sequencing performed on plasma samples of 120 healthy volunteers with different dietary habits (vegans, vegetarians, and omnivores). Dietary intakes of specific nutrients were estimated for each subject from the information reported in the food-frequency questionnaire previously validated in the EPIC study. We focused hereby on the intake of 23 natural compounds (NCs) of the classes of lipids, micro-elements, and vitamins. We identified 78 significant correlations (rho > 0.300, p-value < 0.05) among the estimated daily intake of 13 NCs and the expression levels of 58 plasma miRNAs. Overall, vitamin D, sodium, and vitamin E correlated with the largest number of miRNAs. All the identified correlations were consistent among the three dietary groups and 22 of them were confirmed as significant (p-value < 0.05) by age-, gender-, and body-mass index-adjusted Generalized Linear regression Model analysis. miR-23a-3p expression levels were related with different NCs including a significant positive correlation with sodium (rho = 0.377) and significant negative correlations with lipid-related NCs and vitamin E. Conversely, the estimated intake of vitamin D was negatively correlated with the expression of the highest number of circulating miRNAs, particularly miR-1277-5p (rho = −0.393) and miR-144-3p (rho = −0.393). Functional analysis of the targets of sodium intake-correlated miRNAs highlighted terms related to cardiac development. A similar approach on targets of those miRNAs correlated with vitamin D intake showed an enrichment in genes involved in hormone metabolisms, while the response to chronic inflammation was among the top enriched processes involving targets of miRNAs negatively related with vitamin E intake. Our findings show that nutrients through the habitual diet influence circulating miRNA profiles and highlight that this aspect must be considered in the nutri-epigenomic research

    Faecal miRNA profiles associated with age, sex, BMI, and lifestyle habits in healthy individuals

    Get PDF
    Abstract For their stability and detectability faecal microRNAs represent promising molecules with potential clinical interest as non-invasive diagnostic and prognostic biomarkers. However, there is no evidence on how stool miRNA profiles change according to an individual’s age, sex, and body mass index (BMI) or how lifestyle habits influence the expression levels of these molecules. We explored the relationship between the stool miRNA levels and common traits (sex, age, BMI, and menopausal status) or lifestyle habits (physical activity, smoking status, coffee, and alcohol consumption) as derived by a self-reported questionnaire, using small RNA-sequencing data of samples from 335 healthy subjects. We detected 151 differentially expressed miRNAs associated with one variable and 52 associated with at least two. Differences in miR-638 levels were associated with age, sex, BMI, and smoking status. The highest number of differentially expressed miRNAs was associated with BMI (n = 92) and smoking status (n = 84), with several miRNAs shared between them. Functional enrichment analyses revealed the involvement of the miRNA target genes in pathways coherent with the analysed variables. Our findings suggest that miRNA profiles in stool may reflect common traits and lifestyle habits and should be considered in relation to disease and association studies based on faecal miRNA expression
    corecore