64 research outputs found

    Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share

    Get PDF
    .Buildings are one of the most important energy consumers in modern economy countries. The massive use of electrical vehicles could help decarbonizing the economy by using electricity produced using renewable energy. Combined use of Vehicle to Grid (V2G), Vehicle to Home (V2H) and Vehicle to Building (V2B) is one of the strategies to increase the number of electrical vehicles, ensure a better coupling between energy generation and consumption, reducing peak demand and increasing global energy efficiency. This research presents a novel approach of combined use of V2H and V2B that can be applied in different scenarios such as when the building workers own EVs, company shared car fleets or leasing, among others. Recharged energy at workers homes during night hours is delivered in the building during daily working hours lowering peak demand, reducing carbon intensity and energy cost savings. The results show that the methodology is feasible and can be extended to other cases and greatly contribute to better energy efficiency, reduces peak demand in buildings and increase electric vehicles penetration in transport to workplaces.S

    Analysis of smart energy systems and high participation of V2G impact for the ecuadorian 100% renewable energy system by 2050

    Get PDF
    This research presents a 100% renewable energy (RE) scenario by 2050 with a high share of electric vehicles on the grid (V2G) developed in Ecuador with the support of the EnergyPLAN analysis tool. Hour-by-hour data iterations were performed to determine solutions among various features, including energy storage, V2G connections that spanned the distribution system, and long-term evaluation. The high participation in V2G connections keeps the electrical system available; meanwhile, the high proportions of variable renewable energy are the pillar of the joint electrical system. The layout of the sustainable mobility scenario and the high V2G participation maintain the balance of the electrical system during most of the day, simplifying the storage equipment requirements. Consequently, the influence of V2G systems on storage is a significant result that must be considered in the energy transition that Ecuador is developing in the long term. The stored electricity will not only serve as storage for future grid use. Additionally, the V2G batteries serve as a buffer between generation from diversified renewable sources and the end-use stage.Peer ReviewedPostprint (published version

    Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share

    Get PDF
    Buildings are one of the most important energy consumers in modern economy countries. The massive use of electrical vehicles could help decarbonizing the economy by using electricity produced using renewable energy. Combined use of Vehicle to Grid (V2G), Vehicle to Home (V2H) and Vehicle to Building (V2B) is one of the strategies to increase the number of electrical vehicles, ensure a better coupling between energy generation and consumption, reducing peak demand and increasing global energy efficiency. This research presents a novel approach of combined use of V2H and V2B that can be applied in different scenarios such as when the building workers own EVs, company shared car fleets or leasing, among others. Recharged energy at workers homes during night hours is delivered in the building during daily working hours lowering peak demand, reducing carbon intensity and energy cost savings. The results show that the methodology is feasible and can be extended to other cases and greatly contribute to better energy efficiency, reduces peak demand in buildings and increase electric vehicles penetration in transport to workplaces

    Developing a socially-aware robot assistant for delivery tasks

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Applied Technologies. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-42520-3_42This paper discusses about elements to be considered for developing a Service Robot that performs its task in a social environment. Due to the social focus of the service, not only technical considerations are demanded in order to accomplish with the task, but also the acceptance of use for the people, who interact with all of them. As our particular research topic, we establish a taxonomy to determine the framework for the development of socially-aware robot assistants for serving tasks such as deliveries. This is a general approach to be considered for any service robot being implemented in a social context. This article presents several previous cases of the implementation of service mobile robots, their analysis and the motivation of how to solve their acceptance and use by people. Therefore, under this approach it is very important not to generate false expectations about the capabilities of the robot, because as it is explained in the state of the art analysis that very high unsatisfied expectations lead to leaving the robot unused....Peer ReviewedPostprint (published version

    Human Activity Recognition without Vision Tracking

    Get PDF
    This work describes the recognition of human activity based on the interaction between people and objects in domestic settings, specifically in a kitchen. The difference between this and other proposals is that considers a human activity in a process without vision tracking. Videos are a sequence of photographs. Taking this into account, if you analyze an orderly sequence of images it could be based on the objects present in each scene so that you can understand the possible activity performed. However, it is not enough to consider the objects present in the scene; it is necessary to determine if those objects are employed or not by the humans present. If they are used, it is evident that they are necessary to carry out the activity; if they are not used they would only provide noise to the recognized activity. Therefore, it is necessary to generate a conceptualization of objects in the scene with characteristics (definition of an object, motion detector, object recognition, object position, object action) that allows you to recognize them and to determine the degree of use (unchanged, added, removed, moved, and indeterminate) and influence the possible recognized activity

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z‚ąľ0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z‚ąľ0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    • ‚Ķ
    corecore