213 research outputs found

    Diffractive phenomena

    Get PDF
    The most recent theoretical and experimental results in the field of diffractive scattering are reviewed. A parallel between the two current theoretical approaches to diffraction, the DIS picture in the Breit frame and the dipole picture in the target frame, is given, accompanied by a description of the models to which the data are compared. A recent calculation of the rescattering corrections, which hints at the universality of the diffractive parton distribution functions, is presented. The concept of generalized parton distributions is discussed together with the first measurement of the processes which might give access to them. Particular emphasis is given to the HERA data, to motivate why hard diffraction in deep inelastic scattering is viewed as an unrivalled instrument to shed light on the still obscure aspects of hadronic interactions.Comment: invited talk at the XX International Symposium on Lepton and Photon Interactions at High Energies, Rome, Italy, July 200

    100ps time resolution with thin silicon pixel detectors and a SiGe HBT amplifier

    Full text link
    A 100um thick silicon detector with 1mm2 pad readout optimized for sub-nanosecond time resolution has been developed and tested. Coupled to a purposely developed amplifier based on SiGe HBT technology, this detector was characterized at the H8 beam line at the CERN SPS. An excellent time resolution of (106+-1)ps for silicon detectors was measured with minimum ionizing particles

    A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication

    Get PDF
    The crucial role of the immune system in hypertension is now widely recognized. We previously reported that hypertensive challenges couple the nervous drive with immune system activation, but the physiological and molecular mechanisms of this connection are unknown. Here, we show that hypertensive challenges activate splenic sympathetic nerve discharge to prime immune response. More specifically, a vagus-splenic nerve drive, mediated by nicotinic cholinergic receptors, links the brain and spleen. The sympathetic discharge induced by hypertensive stimuli was absent in both coeliac vagotomized mice and in mice lacking α7nAChR, a receptor typically expressed by peripheral ganglionic neurons. This cholinergic-sympathetic pathway is necessary for T cell activation and egression on hypertensive challenges. In addition, we show that selectively thermoablating the splenic nerve prevents T cell egression and protects against hypertension. This novel experimental procedure for selective splenic denervation suggests new clinical strategies for resistant hypertension

    Targeting interleukin-1β protects from aortic aneurysms induced by disrupted transforming growth factor β signaling

    Get PDF
    Aortic aneurysms are life-threatening conditions with effective treatments mainly limited to emergency surgery or trans-arterial endovascular stent grafts, thus calling for the identification of specific molecular targets. Genetic studies have highlighted controversial roles of transforming growth factor β (TGF-β) signaling in aneurysm development. Here, we report on aneurysms developing in adult mice after smooth muscle cell (SMC)-specific inactivation of Smad4, an intracellular transducer of TGF-β. The results revealed that Smad4 inhibition activated interleukin-1β (IL-1β) in SMCs. This danger signal later recruited innate immunity in the adventitia through chemokine (C-C motif) ligand 2 (CCL2) and modified the mechanical properties of the aortic wall, thus favoring vessel dilation. SMC-specific Smad4 deletion in Il1r1- or Ccr2-null mice resulted in milder aortic pathology. A chronic treatment with anti-IL-1β antibody effectively hampered aneurysm development. These findings identify a mechanistic target for controlling the progression of aneurysms with compromised TGF-β signaling, such as those driven by SMAD4 mutations

    Lack of kinase-independent activity of PI3KÎł in locus coeruleus induces ADHD symptoms through increased CREB signaling.

    Get PDF
    Although PI3KÎł has been extensively investigated in inflammatory and cardiovascular diseases, the exploration of its functions in the brain is just at dawning. It is known that PI3KÎł is present in neurons and that the lack of PI3KÎł in mice leads to impaired synaptic plasticity, suggestive of a role in behavioral flexibility. Several neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), involve an impairment of behavioral flexibility. Here, we found a previously unreported expression of PI3KÎł throughout the noradrenergic neurons of the locus coeruleus (LC) in the brainstem, serving as a mechanism that regulates its activity of control on attention, locomotion and sociality. In particular, we show an unprecedented phenotype of PI3KÎł KO mice resembling ADHD symptoms. PI3KÎł KO mice exhibit deficits in the attentive and mnemonic domains, typical hyperactivity, as well as social dysfunctions. Moreover, we demonstrate that the ADHD phenotype depends on a dysregulation of CREB signaling exerted by a kinase-independent PI3KÎł-PDE4D interaction in the noradrenergic neurons of the locus coeruleus, thus uncovering new tools for mechanistic and therapeutic research in ADHD

    A monolithic ASIC demonstrator for the Thin Time-of-Flight PET scanner

    Full text link
    Time-of-flight measurement is an important advancement in PET scanners to improve image reconstruction with a lower delivered radiation dose. This article describes the monolithic ASIC for the TT-PET project, a novel idea for a high-precision PET scanner for small animals. The chip uses a SiGe Bi-CMOS process for timing measurements, integrating a fully-depleted pixel matrix with a low-power BJT-based front-end per channel, integrated on the same 100 ÎĽm\mu{} m thick die. The target timing resolution is 30 ps RMS for electrons from the conversion of 511 keV photons. A novel synchronization scheme using a patent-pending TDC is used to allow the synchronization of 1.6 million channels across almost 2000 different chips at picosecond-level. A full-featured demonstrator chip with a 3x10 matrix of 500x500 ÎĽm2\mu{} m^{2} pixels was produced to validate each block. Its design and experimental results are presented here

    Radiation hard Depleted Monolithic Active Pixel Sensors with high-resistivity substrates

    Get PDF
    High Voltage/High resistivity Depleted Monolithic Active Pixel Sensors (HV/HR-DMAPS) is a technology which is becoming of great interest for high energy physics applications.With respect to hybrid pixel detectors the monolithic approach offers the main advantages of reduced material budget and production costs due to the absence of the bump bonding process. This aspect is important especially when large areas need to be covered as in the tracking detectors of the LHC experiments. Thus, the possibility of employing this technology in the outermost layers of the upgraded ATLAS pixel detector at the HL-LHC is being investigated.Different HR/HV-DMAPS prototypes have been recently developed for the future ATLAS Inner Tracker (ITk) with the aim of studying their radiation hardness and the feasibility of producing large area devices.The H35DEMO is a large area demonstrator chip for the ITk designed by KIT, IFAE and University of Liverpool and produced in AMS 350 nm HV-CMOS technology with an engineering run on four different substrate resistivities: 20, 80, 200 and 1000 Ωcm\mathrm{\Omega cm}. It consists of four large matrices, two of which include digital electronics and are thus fully monolithic. One, called CMOS matrix, has comparators made of CMOS transistors in the periphery only, while the other, called NMOS matrix, includes also comparators made of NMOS transistors directly in the pixels. The other two matrices have only analog front-end electronics and are meant to be coupled to ATLAS FE-I4 chips. All matrices feature pixels with a size of (50×250)  μm2\mathrm{(50\times250)\;\mu m^2} in which the analog electronics are embedded in a Deep N-WELL (DNWELL) also acting as collecting electrode.A Data Acquisition (DAQ) system was developed at IFAE to read out and test the monolithic matrices of the H35DEMO both in the laboratory and with beam test experiments. H35DEMO chips with a resistivity of 200 Ωcm\mathrm{\Omega cm} have been irradiated with reactor neutrons to a particle fluence of 1×10151\times10^{15} 1  MeV  neq/cm2\mathrm{1\;MeV\;n_{eq}/cm^2}, the expected fluence for the outermost pixel layer of ITk. The monolithic CMOS matrix of the H35DEMO chip was extensively characterised before and after irradiation in beam tests at Fermilab and DESY, with proton and electron beams, respectively.Results after irradiation show good performance in terms of hit efficiency with thresholds of about 1800 e and a bias voltage of 150 V.Another production of monolithic HV-CMOS prototypes in LFoundry 150 nm technology (LF2) has been recently completed. It includes sensors with a similar DNWELL concept as the H35DEMO but with a smaller pixel size of (50×50)  μm2\mathrm{(50\times50)\;\mu m^2}. Preliminary measurements of leakage current of the LF2 chips have been preformed showing good agreement with what expected from the foundry process
    • …