352 research outputs found

### Heisenberg-Weyl algebra revisited: Combinatorics of words and paths

The Heisenberg-Weyl algebra, which underlies virtually all physical
representations of Quantum Theory, is considered from the combinatorial point
of view. We provide a concrete model of the algebra in terms of paths on a
lattice with some decomposition rules. We also discuss the rook problem on the
associated Ferrers board; this is related to the calculus in the normally
ordered basis. From this starting point we explore a combinatorial underpinning
of the Heisenberg-Weyl algebra, which offers novel perspectives, methods and
applications.Comment: 5 pages, 3 figure

### Dobinski-type relations: Some properties and physical applications

We introduce a generalization of the Dobinski relation through which we
define a family of Bell-type numbers and polynomials. For all these sequences
we find the weight function of the moment problem and give their generating
functions. We provide a physical motivation of this extension in the context of
the boson normal ordering problem and its relation to an extension of the Kerr
Hamiltonian.Comment: 7 pages, 1 figur

### Hierarchical Dobinski-type relations via substitution and the moment problem

We consider the transformation properties of integer sequences arising from
the normal ordering of exponentiated boson ([a,a*]=1) monomials of the form
exp(x (a*)^r a), r=1,2,..., under the composition of their exponential
generating functions (egf). They turn out to be of Sheffer-type. We demonstrate
that two key properties of these sequences remain preserved under
substitutional composition: (a)the property of being the solution of the
Stieltjes moment problem; and (b) the representation of these sequences through
infinite series (Dobinski-type relations). We present a number of examples of
such composition satisfying properties (a) and (b). We obtain new Dobinski-type
formulas and solve the associated moment problem for several hierarchically
defined combinatorial families of sequences.Comment: 14 pages, 31 reference

### Monomiality principle, Sheffer-type polynomials and the normal ordering problem

We solve the boson normal ordering problem for $(q(a^\dag)a+v(a^\dag))^n$
with arbitrary functions $q(x)$ and $v(x)$ and integer $n$, where $a$ and
$a^\dag$ are boson annihilation and creation operators, satisfying
$[a,a^\dag]=1$. This consequently provides the solution for the exponential
$e^{\lambda(q(a^\dag)a+v(a^\dag))}$ generalizing the shift operator. In the
course of these considerations we define and explore the monomiality principle
and find its representations. We exploit the properties of Sheffer-type
polynomials which constitute the inherent structure of this problem. In the end
we give some examples illustrating the utility of the method and point out the
relation to combinatorial structures.Comment: Presented at the 8'th International School of Theoretical Physics
"Symmetry and Structural Properties of Condensed Matter " (SSPCM 2005),
Myczkowce, Poland. 13 pages, 31 reference

- â€¦