3,395 research outputs found

    Status and physics prospects of the SuperKEKB/Belle II project

    Get PDF
    Measurements at the KEKB collider and the Belle detector have provided important insights into the flavor structure of elementary particles. By upgrading to the SuperKEKB collider and the Belle II detector, we expect ∼ 40 times higher luminosity with improved detections in several aspects. Measurements at the upgraded apparatus will over-constrain the parameter space of the Standard Model and its extensions and will shed light on the nature of new physics. This paper describes the status and physics prospects of the SuperKEKB/Belle II project

    Optical conductivity in the CuO double chains of PrBa_2Cu_4O_8: Consequences of charge fluctuation

    Full text link
    We calculate the optical conductivity of the CuO double chains of PrBa2_2Cu4_4O8_8 by the mean-field approximation for the coupled two-chain Hubbard model around quarter filling. We show that the \sim40 meV peak structure, spectral shape, and small Drude weight observed in experiment are reproduced well by the present calculation provided that the stripe-type charge ordering presents. We argue that the observed anomalous optical response may be due to the presence of stripe-type fluctuations of charge carriers in the CuO double chains; the fast time scale of the optical measurement should enable one to detect slowly fluctuating order parameters as virtually a long-range order.Comment: 7 pages, 5 eps figure

    Universal relationship between crystallinity and irreversibility field of MgB2

    Full text link
    The relationship between irreversibility field, Hirr, and crystallinity of MgB2 bulks including carbon substituted samples was studied. The Hirr was found to increase with an increase of FWHM of MgB2 (110) peak, which corresponds to distortion of honeycomb boron sheet, and their universal correlation was discovered even including carbon substituted samples. Excellent Jc characteristics under high magnetic fields were observed in samples with large FWHM of (110) due to the enhanced intraband scattering and strengthened grain boundary flux pinning. The relationship between crystallinity and Hirr can explain the large variation of Hirr for MgB2 bulks, tapes, single crystals and thin films.Comment: 3 pages, 4 figures, to be published in Appl. Phys. Lett. (in press

    Superconductivity in Pr2Ba4Cu7O15-delta with metallic double chains

    Full text link
    We report superconductivity with Tc,onsetT_{c,onset}=\sim10K in Pr2_{2}Ba4_{4}Cu7_{7}O15δ_{15-\delta} compound possessing metallic double chains. A reduction treatment on as-sintered samples causes not only the enhanced metallic conduction but also the appearance of superconductivity accompanied by the c-axis elongation due to oxygen deficiency

    Structural Features of Layered Iron Pnictide Oxides (Fe2As2)(Sr4M2O6)

    Full text link
    Structural features of newly found perovskite-based iron pnictide oxide system have been systematically studied. Compared to REFePnO system, perovskite-based system tend to have lower Pn-Fe-Pn angle and higher pnictogen height owing to low electronegativity of alkaline earth metal and small repulsive force between pnictogen and oxygen atoms. As-Fe-As angles of (Fe2As2)(Sr4Cr2O6), (Fe2As2)(Sr4V2O6) and (Fe2Pn2)(Sr4MgTiO6) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may leads to realization of high Tc superconductivity.Comment: 3pages, 2figures, 1table, proceedings of M2S 200

    Spin dynamics and antiferromagnetic order in PrBa2Cu4O8 studied by Cu nuclear respnance

    Full text link
    Results of the nuclear resonance experiments for the planar Cu sites in PrBa2Cu4O8 are presented. The NMR spectrum at 1.5 K in zero magnetic field revealed an internal field of 6.1 T, providing evidence for an antiferromagnetic order of the planar Cu spins. This confirms that the CuO2 planes are insulating, therefore, the metallic conduction in this material is entirely due to the one-dimensional zigzag Cu2O2 chains. The results of the spin-lattice relaxation rates measured by zero field NQR above 245 K in the paramagnetic state are explained by the theory for a Heisenberg model on a square lattice.Comment: 4 pages, 2 figure