23 research outputs found

    Structures and luminescent properties of two heterotrimetallic Ln(III)–Sr(II)–K(I) complexes

    No full text
    <div><p>Eu(III)–Sr(II)–K(I) and Tb(III)–Sr(II)–K(I) heterotrimetallic metal-organic frameworks with 2,4,6-pyridinetricarboxylic acid have been synthesized under hydrothermal conditions. The complexes are isomorphic and both in triclinic space group <i>P-1</i>. The ligands bond with three metal ions with two coordination modes. One connects seven metal ions and the other connects eight metal ions. IR spectra, thermal analysis, and photoluminescent properties have been studied. The results display strong characteristic emissions of Eu(III) or Tb(III) ions with excitation of ultraviolet radiation.</p></div

    Additional file 2 of ILC1-derived IFN-γ regulates macrophage activation in colon cancer

    No full text
    Additional file 2. Anti-IFN-g down-regulates M1 macrophage while increase M2 Macrophage percentage

    Dual-Responsive Mesoporous Silica Nanoparticles Mediated Codelivery of Doxorubicin and Bcl‑2 SiRNA for Targeted Treatment of Breast Cancer

    No full text
    The combination of chemotherapy and gene therapy could induce the enhanced therapeutic efficacy in the cancer therapy. To achieve this goal, a new mesoporous silica nanoparticles (MSNs)-based codelivery system was developed for targeted simultaneous delivery of doxorubicin (DOX) and Bcl-2 small interfering RNA (siRNA) into breast cancer cells. The multifunctional MSNs (MSNs-PPPFA) were prepared by modification of polyethylenimine–polylysine copolymers (PEI-PLL) via the disulfide bonds, to which a targeting ligand folate-linked poly­(ethylene glycol) (FA-PEG) was conjugated. The multifunctional MSNs-PPPFA nanocarrier has the ability to encapsulate DOX into the mesoporous channels of MSNs, while simultaneously carrying siRNA via electrostatic interaction between cationic MSNs-PPPFA and anionic siRNA. The resulting MSNs-PPPFA nanoparticles were characterized with various techniques. The drug release results reveal that DOX released from DOX-loaded MSNs-PPPFA are both pH- and redox-responsive, and the results of cell viability and hemolysis assays show that the functional nanocarrier has excellent biocompatibility. Importantly, the folate-conjugated MSNs-PPPFA showed significantly enhanced intracellular uptake in the folate receptor overexpressed MDA-MB-231 breast cancer cells than nontargeted counterparts and thus results in more DOX and siRNA being codelivered into the cells. Furthermore, the delivery of Bcl-2 siRNA obviously downregulate the Bcl-2 protein expression, and thus targeted codelivery of DOX and Bcl-2 siRNA by DOX@MSNs-PPPFA/Bcl-2 siRNA in MDA-MB-231 cells could induce remarkable cell apoptosis as indicated by the results of cell viability and cell apoptosis assays. These results indicate that the constructed DOX@MSNs-PPPFA/Bcl-2 siRNA codelivery system is promising for targeted treatment of breast cancer

    Image_3_Plasma Cell Alloantigen 1 and IL-10 Secretion Define Two Distinct Peritoneal B1a B Cell Subsets With Opposite Functions, PC1high Cells Being Protective and PC1low Cells Harmful for the Growing Fetus.jpg

    No full text
    <p>B cells possess various immuno regulatory functions. However, research about their participation in tolerance induction toward the fetus is just emerging. Accumulating evidence supports the idea that B cells can play seemingly conflicting roles during pregnancy, either protecting or harming the fetus. Previous findings indicated the presence of two different peritoneal B cell subsets, defined by the expression of the plasma cell alloantigen 1 (PC1) and with distinct immune modulatory functions. Here, we aimed to study the participation of these two B cell subsets, on pregnancy outcome in a murine model of disturbed fetal tolerance. The frequencies and cell numbers of peritoneal and splenic CD19<sup>+</sup>IL-10<sup>+</sup> and CD19<sup>+</sup>CD5<sup>+</sup>IL-10<sup>+</sup>PC1<sup>+</sup> cells were assessed in virgin as well as normal pregnant (NP) and abortion-prone (AP) females during the course of gestation. Peritoneal PC1<sup>low</sup> or PC1<sup>high</sup> B1a B cells were sorted, analyzed for their ability to secrete IL-10 and adoptively transferred into NP or AP females. On gestation day (gd) 12, the abortion rate as well as the frequencies and cell numbers of regulatory T cells, TH1 and TH17 cells were determined in spleens and decidua. In addition, mRNA expression of IL-10, TGF-β, IFN-γ, and TNF-α was analyzed in decidual tissue. Peritoneal CD19<sup>+</sup>IL-10<sup>+</sup> and CD19<sup>+</sup>CD5<sup>+</sup>IL-10<sup>+</sup>PC1<sup>+</sup> frequencies fluctuated during the progression of normal pregnancies while no significant changes were observed in spleen. AP females showed significantly reduced frequencies of both B cell populations and exhibited an altered peritoneal PC1<sup>high</sup>/PC1<sup>low</sup> ratio at gd10. Adoptive transfers of PC1<sup>low</sup> B1a B cells into NP females increased the abortion rate in association with a reduced splenic regulatory T/TH17 ratio. By contrast, the transfer of PC1<sup>high</sup> B1a B cells into AP females significantly diminished the fetal rejection rate and significantly reduced the numbers of splenic TH17 cells. Our results suggest that the peritoneum harbors two distinct B1a B cell subsets that can be distinguished by their PC1 expression. Whereas PC1<sup>high</sup> B1a B cells seem to support fetal survival, PC1<sup>low</sup> cells B1a B cells may compromise fetal well-being.</p

    Image_1_Plasma Cell Alloantigen 1 and IL-10 Secretion Define Two Distinct Peritoneal B1a B Cell Subsets With Opposite Functions, PC1high Cells Being Protective and PC1low Cells Harmful for the Growing Fetus.jpg

    No full text
    <p>B cells possess various immuno regulatory functions. However, research about their participation in tolerance induction toward the fetus is just emerging. Accumulating evidence supports the idea that B cells can play seemingly conflicting roles during pregnancy, either protecting or harming the fetus. Previous findings indicated the presence of two different peritoneal B cell subsets, defined by the expression of the plasma cell alloantigen 1 (PC1) and with distinct immune modulatory functions. Here, we aimed to study the participation of these two B cell subsets, on pregnancy outcome in a murine model of disturbed fetal tolerance. The frequencies and cell numbers of peritoneal and splenic CD19<sup>+</sup>IL-10<sup>+</sup> and CD19<sup>+</sup>CD5<sup>+</sup>IL-10<sup>+</sup>PC1<sup>+</sup> cells were assessed in virgin as well as normal pregnant (NP) and abortion-prone (AP) females during the course of gestation. Peritoneal PC1<sup>low</sup> or PC1<sup>high</sup> B1a B cells were sorted, analyzed for their ability to secrete IL-10 and adoptively transferred into NP or AP females. On gestation day (gd) 12, the abortion rate as well as the frequencies and cell numbers of regulatory T cells, TH1 and TH17 cells were determined in spleens and decidua. In addition, mRNA expression of IL-10, TGF-β, IFN-γ, and TNF-α was analyzed in decidual tissue. Peritoneal CD19<sup>+</sup>IL-10<sup>+</sup> and CD19<sup>+</sup>CD5<sup>+</sup>IL-10<sup>+</sup>PC1<sup>+</sup> frequencies fluctuated during the progression of normal pregnancies while no significant changes were observed in spleen. AP females showed significantly reduced frequencies of both B cell populations and exhibited an altered peritoneal PC1<sup>high</sup>/PC1<sup>low</sup> ratio at gd10. Adoptive transfers of PC1<sup>low</sup> B1a B cells into NP females increased the abortion rate in association with a reduced splenic regulatory T/TH17 ratio. By contrast, the transfer of PC1<sup>high</sup> B1a B cells into AP females significantly diminished the fetal rejection rate and significantly reduced the numbers of splenic TH17 cells. Our results suggest that the peritoneum harbors two distinct B1a B cell subsets that can be distinguished by their PC1 expression. Whereas PC1<sup>high</sup> B1a B cells seem to support fetal survival, PC1<sup>low</sup> cells B1a B cells may compromise fetal well-being.</p

    Image_2_Plasma Cell Alloantigen 1 and IL-10 Secretion Define Two Distinct Peritoneal B1a B Cell Subsets With Opposite Functions, PC1high Cells Being Protective and PC1low Cells Harmful for the Growing Fetus.jpg

    No full text
    <p>B cells possess various immuno regulatory functions. However, research about their participation in tolerance induction toward the fetus is just emerging. Accumulating evidence supports the idea that B cells can play seemingly conflicting roles during pregnancy, either protecting or harming the fetus. Previous findings indicated the presence of two different peritoneal B cell subsets, defined by the expression of the plasma cell alloantigen 1 (PC1) and with distinct immune modulatory functions. Here, we aimed to study the participation of these two B cell subsets, on pregnancy outcome in a murine model of disturbed fetal tolerance. The frequencies and cell numbers of peritoneal and splenic CD19<sup>+</sup>IL-10<sup>+</sup> and CD19<sup>+</sup>CD5<sup>+</sup>IL-10<sup>+</sup>PC1<sup>+</sup> cells were assessed in virgin as well as normal pregnant (NP) and abortion-prone (AP) females during the course of gestation. Peritoneal PC1<sup>low</sup> or PC1<sup>high</sup> B1a B cells were sorted, analyzed for their ability to secrete IL-10 and adoptively transferred into NP or AP females. On gestation day (gd) 12, the abortion rate as well as the frequencies and cell numbers of regulatory T cells, TH1 and TH17 cells were determined in spleens and decidua. In addition, mRNA expression of IL-10, TGF-β, IFN-γ, and TNF-α was analyzed in decidual tissue. Peritoneal CD19<sup>+</sup>IL-10<sup>+</sup> and CD19<sup>+</sup>CD5<sup>+</sup>IL-10<sup>+</sup>PC1<sup>+</sup> frequencies fluctuated during the progression of normal pregnancies while no significant changes were observed in spleen. AP females showed significantly reduced frequencies of both B cell populations and exhibited an altered peritoneal PC1<sup>high</sup>/PC1<sup>low</sup> ratio at gd10. Adoptive transfers of PC1<sup>low</sup> B1a B cells into NP females increased the abortion rate in association with a reduced splenic regulatory T/TH17 ratio. By contrast, the transfer of PC1<sup>high</sup> B1a B cells into AP females significantly diminished the fetal rejection rate and significantly reduced the numbers of splenic TH17 cells. Our results suggest that the peritoneum harbors two distinct B1a B cell subsets that can be distinguished by their PC1 expression. Whereas PC1<sup>high</sup> B1a B cells seem to support fetal survival, PC1<sup>low</sup> cells B1a B cells may compromise fetal well-being.</p

    B cells from BXSB.<i>Yaa</i> mice are potent producers of IL6.

    No full text
    <p>(A) CD43<sup>-</sup> B cells were purified from spleen, BM and peritoneal lavage of 4–5 month old BXSB.<i>Yaa</i> and BXSB mice and stimulated with graded concentrations of Imiquimod (R837). (B) Dendritic cells enriched from spleen (splenic DCs) or differentiated from BM precursors (GMCSF (40ng/ml) and IL4 (20ng/ml) for 9 d with media changed every third day), peritoneal macrophages and CD115<sup>+</sup> monocytes from spleens of BXSB.<i>Yaa</i> and BXSB mice were stimulated with R837 (50ng/ml) <i>in vitro</i>. Supernatants were collected after 24 hours and IL6 levels were quantified using a standard sandwich ELISA. Data expressed as mean ± SEM of triplicate wells are representative of 4–6 independent experiments. p values are determined by two-way ANOVA. * p<0.05, ** p<0.01, ***p<0.0001.</p
    corecore