72,131 research outputs found

    Radial basis function classifier construction using particle swarm optimisation aided orthogonal forward regression

    Get PDF
    We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation

    Broadband optical radiation detector

    Get PDF
    A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein

    Sparse kernel density estimation technique based on zero-norm constraint

    Get PDF
    A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance

    Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect

    Get PDF
    A sample material was irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses was absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate was chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (cw) laser beam, irradiated the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated

    Probability density estimation with tunable kernels using orthogonal forward regression

    Get PDF
    A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately

    A Tri-band-notched UWB Antenna with Low Mutual Coupling between the Band-notched Structures

    Get PDF
    A compact printed U-shape ultra-wideband (UWB) antenna with triple band-notched characteristics is presented. The proposed antenna, with compact size of 24×33 mm2, yields an impedance bandwidth of 2.8-12GHz for VSWR<2, except the notched bands. The notched bands are realized by introducing two different types of slots. Two C-shape half-wavelength slots are etched on the radiating patch to obtain two notched bands in 3.3-3.7GHz for WiMAX and 7.25-7.75GHz for downlink of X-band satellite communication systems. In order to minimize the mutual coupling between the band-notched structures, the middle notched band in 5-6GHz for WLAN is achieved by using a U-slot defected ground structure. The parametric study is carried out to understand the mutual coupling. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications

    Ground States of S-duality Twisted N=4 Super Yang-Mills Theory

    Get PDF
    We study the low-energy limit of a compactification of N=4 U(n) super Yang-Mills theory on S1S^1 with boundary conditions modified by an S-duality and R-symmetry twist. This theory has N=6 supersymmetry in 2+1D. We analyze the T2T^2 compactification of this 2+1D theory by identifying a dual weakly coupled type-IIA background. The Hilbert space of normalizable ground states is finite-dimensional and appears to exhibit a rich structure of sectors. We identify most of them with Hilbert spaces of Chern-Simons theory (with appropriate gauge groups and levels). We also discuss a realization of a related twisted compactification in terms of the (2,0)-theory, where the recent solution by Gaiotto and Witten of the boundary conditions describing D3-branes ending on a (p,q) 5-brane plays a crucial role.Comment: 104 pages, 5 figures. Revisions to subsection (6.6) and other minor corrections included in version

    Stress-concentration factors for finite orthotropic laminates with a circular hole and uniaxial loading

    Get PDF
    Stresses were calculated for finite-width orthotropic laminates with a circular hole and remote uniaxial loading using a two-dimensional finite element analysis with both uniform stress and uniform displacement boundary conditions. Five different laminates were analyzed. Computed results are presented for selected combinations of hole diameter/sheet-width ratio d/w and length-to-width ratio L/w. For small L/w values, the stress-concentration factors K sub tn were significantly different for the uniform stress and uniform displacement boundary conditions. Typically, for the uniform stress condition, the K sub tn values were much larger than for the infinite strip reference condition; however, for the uniform displacement condition, they were only slightly smaller than for this reference. The results for long strips are also presented as width correction factors. For d/w less or = 0.33, these width correction factors are nearly equal for all five laminates
    corecore