30,500 research outputs found

    A Simple Bayesian Method for Improved Analysis of Quasi-2D Scattering Data

    Full text link
    A new method is presented for the analysis of small angle neutron scattering data from quasi-2D systems such as flux lattices, Skyrmion lattices, and aligned liquid crystals. A significant increase in signal to noise ratio, and a natural application of the Lorentz factor can be achieved by taking advantage of the knowledge that all relevant scattering is centered on a plane in reciprocal space. The Bayesian form ensures that missing information is treated in a controlled way and can be subsequently included in the analysis. A simple algorithm based on Gaussian probability assumptions is provided which provides very satisfactory results. Finally, it is argued that a generalised model-independent Bayesian data analysis method would be highly advantageous for the processing of neutron and x-ray scattering data

    Vibration damping system Patent

    Get PDF
    Vibration damping system operating in low vacuum environment for spacecraft mechanism

    Amoxicillin for Severe Acute Malnutrition in Children

    Get PDF

    Oceanic wave measurement system

    Get PDF
    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion

    Valence fluctuation mediated superconductivity in CeCu2Si2

    Full text link
    It has been proposed that there are two types of superconductivity in CeCu2Si2, mediated by spin fluctuations at ambient pressure, and by critical valence fluctuations around a charge instability at a pressure P_v \simeq 4.5 GPa. We present in detail some of the unusual features of this novel type of superconducting state, including the coexistence of superconductivity and huge residual resistivity of the order of the Ioffe-Regel limit, large and pressure dependent resistive transition widths in a single crystal measured under hydrostatic conditions, asymmetric pressure dependence of the specific heat jump shape, unrelated to the resistivity width, and negative temperature dependence of the normal state resistivity below 10 K at very high pressure.Comment: 4 pages, 4 figures; Proceedings SCES '0

    Low-dimensional models for turbulent plane Couette flow in a minimal flow unit

    Get PDF
    We model turbulent plane Couette flow in the minimal flow unit (MFU) – a domain whose spanwise and streamwise extent is just sufficient to maintain turbulence – by expanding the velocity field as a sum of optimal modes calculated via proper orthogonal decomposition from numerical data. Ordinary differential equations are obtained by Galerkin projection of the Navier–Stokes equations onto these modes. We first consider a 6-mode (11-dimensional) model and study the effects of including losses to neglected modes. Ignoring these, the model reproduces turbulent statistics acceptably, but fails to reproduce dynamics; including them, we find a stable periodic orbit that captures the regeneration cycle dynamics and agrees well with direct numerical simulations. However, restriction to as few as six modes artificially constrains the relative magnitudes of streamwise vortices and streaks and so cannot reproduce stability of the laminar state or properly account for bifurcations to turbulence as Reynolds number increases. To address this issue, we develop a second class of models based on ‘uncoupled’ eigenfunctions that allow independence among streamwise and cross-stream velocity components. A 9-mode (31-dimensional) model produces bifurcation diagrams for steady and periodic states in qualitative agreement with numerical Navier–Stokes solutions, while preserving the regeneration cycle dynamics. Together, the models provide empirical evidence that the ‘backbone’ for MFU turbulence is a periodic orbit, and support the roll–streak–breakdown–roll reformation picture of shear-driven turbulence

    Valence Instability and Superconductivity in Heavy Fermion Systems

    Full text link
    Many cerium-based heavy fermion (HF) compounds have pressure-temperature phase diagrams in which a superconducting region extends far from a magnetic quantum critical point. In at least two compounds, CeCu2Si2 and CeCu2Ge2, an enhancement of the superconducting transition temperature was found to coincide with an abrupt valence change, with strong circumstantial evidence for pairing mediated by critical valence, or charge transfer, fluctuations. This pairing mechanism, and the valence instability, is a consequence of a f-c Coulomb repulsion term U_fc in the hamiltonian. While some non-superconducting Ce compounds show a clear first order valence instability, analogous to the Ce alpha-gamma transition, we argue that a weakly first order valence transition may be a general feature of Ce-based HF systems, and both magnetic and critical valence fluctuations may be responsible for the superconductivity in these systems.Comment: 11 pages, 16 figure

    Commutators in the Two-Weight Setting

    Get PDF
    Let RR be the vector of Riesz transforms on Rn\mathbb{R}^n, and let μ,λ∈Ap\mu,\lambda \in A_p be two weights on Rn\mathbb{R}^n, 1<p<∞1 < p < \infty. The two-weight norm inequality for the commutator [b,R]:Lp(Rn;μ)→Lp(Rn;λ)[b, R] : L^p(\mathbb{R}^n;\mu) \to L^p(\mathbb{R}^n;\lambda) is shown to be equivalent to the function bb being in a BMO space adapted to μ\mu and λ\lambda. This is a common extension of a result of Coifman-Rochberg-Weiss in the case of both λ\lambda and μ\mu being Lebesgue measure, and Bloom in the case of dimension one.Comment: v3: suggestions from two referees incorporate

    Vacuum application of thermal barrier plasma coatings

    Get PDF
    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator
    • …
    corecore