4 research outputs found

    Perceptual Requirements for World-Locked Rendering in AR and VR

    Full text link
    Stereoscopic, head-tracked display systems can show users realistic, world-locked virtual objects and environments. However, discrepancies between the rendering pipeline and physical viewing conditions can lead to perceived instability in the rendered content resulting in reduced realism, immersion, and, potentially, visually-induced motion sickness. The requirements to achieve perceptually stable world-locked rendering are unknown due to the challenge of constructing a wide field of view, distortion-free display with highly accurate head- and eye-tracking. In this work we introduce new hardware and software built upon recently introduced hardware and present a system capable of rendering virtual objects over real-world references without perceivable drift under such constraints. The platform is used to study acceptable errors in render camera position for world-locked rendering in augmented and virtual reality scenarios, where we find an order of magnitude difference in perceptual sensitivity between them. We conclude by comparing study results with an analytic model which examines changes to apparent depth and visual heading in response to camera displacement errors. We identify visual heading as an important consideration for world-locked rendering alongside depth errors from incorrect disparity

    LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models

    Get PDF
    The advent of large language models (LLMs) and their adoption by the legal community has given rise to the question: what types of legal reasoning can LLMs perform? To enable greater study of this question, we present LegalBench: a collaboratively constructed legal reasoning benchmark consisting of 162 tasks covering six different types of legal reasoning. LegalBench was built through an interdisciplinary process, in which we collected tasks designed and hand-crafted by legal professionals. Because these subject matter experts took a leading role in construction, tasks either measure legal reasoning capabilities that are practically useful, or measure reasoning skills that lawyers find interesting. To enable cross-disciplinary conversations about LLMs in the law, we additionally show how popular legal frameworks for describing legal reasoning—which distinguish between its many forms—correspond to LegalBench tasks, thus giving lawyers and LLM developers a common vocabulary. This paper describes LegalBench, presents an empirical evaluation of 20 open-source and commercial LLMs, and illustrates the types of research explorations LegalBench enables

    LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models

    Full text link
    The advent of large language models (LLMs) and their adoption by the legal community has given rise to the question: what types of legal reasoning can LLMs perform? To enable greater study of this question, we present LegalBench: a collaboratively constructed legal reasoning benchmark consisting of 162 tasks covering six different types of legal reasoning. LegalBench was built through an interdisciplinary process, in which we collected tasks designed and hand-crafted by legal professionals. Because these subject matter experts took a leading role in construction, tasks either measure legal reasoning capabilities that are practically useful, or measure reasoning skills that lawyers find interesting. To enable cross-disciplinary conversations about LLMs in the law, we additionally show how popular legal frameworks for describing legal reasoning -- which distinguish between its many forms -- correspond to LegalBench tasks, thus giving lawyers and LLM developers a common vocabulary. This paper describes LegalBench, presents an empirical evaluation of 20 open-source and commercial LLMs, and illustrates the types of research explorations LegalBench enables.Comment: 143 pages, 79 tables, 4 figure

    NeuralPassthrough: Learned Real-Time View Synthesis for VR

    Full text link
    Virtual reality (VR) headsets provide an immersive, stereoscopic visual experience, but at the cost of blocking users from directly observing their physical environment. Passthrough techniques are intended to address this limitation by leveraging outward-facing cameras to reconstruct the images that would otherwise be seen by the user without the headset. This is inherently a real-time view synthesis challenge, since passthrough cameras cannot be physically co-located with the eyes. Existing passthrough techniques suffer from distracting reconstruction artifacts, largely due to the lack of accurate depth information (especially for near-field and disoccluded objects), and also exhibit limited image quality (e.g., being low resolution and monochromatic). In this paper, we propose the first learned passthrough method and assess its performance using a custom VR headset that contains a stereo pair of RGB cameras. Through both simulations and experiments, we demonstrate that our learned passthrough method delivers superior image quality compared to state-of-the-art methods, while meeting strict VR requirements for real-time, perspective-correct stereoscopic view synthesis over a wide field of view for desktop-connected headsets.Comment: 9 pages, 12 figure
    corecore