46 research outputs found

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Upregulation of GALNT7 in prostate cancer modifies O-glycosylation and promotes tumour growth.

    Get PDF
    Prostate cancer is the most common cancer in men and it is estimated that over 350,000 men worldwide die of prostate cancer every year. There remains an unmet clinical need to improve how clinically significant prostate cancer is diagnosed and develop new treatments for advanced disease. Aberrant glycosylation is a hallmark of cancer implicated in tumour growth, metastasis, and immune evasion. One of the key drivers of aberrant glycosylation is the dysregulated expression of glycosylation enzymes within the cancer cell. Here, we demonstrate using multiple independent clinical cohorts that the glycosyltransferase enzyme GALNT7 is upregulated in prostate cancer tissue. We show GALNT7 can identify men with prostate cancer, using urine and blood samples, with improved diagnostic accuracy than serum PSA alone. We also show that GALNT7 levels remain high in progression to castrate-resistant disease, and using in vitro and in vivo models, reveal that GALNT7 promotes prostate tumour growth. Mechanistically, GALNT7 can modify O-glycosylation in prostate cancer cells and correlates with cell cycle and immune signalling pathways. Our study provides a new biomarker to aid the diagnosis of clinically significant disease and cements GALNT7-mediated O-glycosylation as an important driver of prostate cancer progression

    ‘It was like an airbag, it cushioned the blow’: A multi-site qualitative study of bereaved parents’ experiences of using cooling facilities

    No full text
    Background: Evidence on the benefits to parents of spending time with their child in the hours after their death means this is now routine practice. UK children’s hospices offer parents the opportunity to extend this period by using cooling facilities (i.e. cooled ‘bedrooms’; cooling blankets/mattresses) to slow deterioration. Aim: To explore parents’ experiences of using cooling facilities and beliefs about how it shaped experiences of the very early days of bereavement, and on-going grieving processes. Methods: Multi-site study involving in-depth interviews with parents bereaved in the previous 3 years. Grief theories informed data analysis, which employed narrative and thematic approaches. Eight hospices supported recruitment. Results: Twenty-two mothers and eight fathers were recruited, representing 25% of families approached. Duration of use of a cooling facility varied, as did the amount of time spent with the child. All parents treasured this period, valuing the way it eased separation from their child and gave some control over when this happened. They believed all bereaved parents should have the opportunity to use a cooling facility. Using a cooling facility supported parents’ engagement with grief tasks including acceptance of loss, processing emotional pain and facing changes to their lives brought about by their child’s death. Memories and mementoes created during this period served to support on-going connections with the child. Parents who used a cooling facility at a hospice reported benefits of the setting itself. Conclusions: As well as easing the very early days of loss, use of cooling facilities may influence longer-term bereavement outcomes

    Strategic targeting of the PI3K-NFkB axis in cisplatin-resistant NSCLC

    No full text
    Chemoresistance is a major therapeutic challenge to overcome in NSCLC, in order to improve the current survival rates of <15% at 5 years. We and others have shown increased PI3K signaling in NSCLC to be associated with a more aggressive disease, and a poorer prognosis. In this study, targeted inhibition of three strategic points of the PI3K–NFκB axis was performed with the aim of exploiting vulnerabilities in cisplatin-resistant NSCLC cells. Cisplatin-resistant cell lines were previously generated through prolonged exposure to the drug. Expression of PI3K and NFκB pathway-related genes were compared between cisplatin-resistant cells and their matched parent cells using a gene expression array, qRT-PCR, DNA sequencing, western blot, and immunofluorescence. Targeted inhibition was performed using GDC-0980, a dual PI3K–mTOR inhibitor currently in Phase II clinical trials in NSCLC, and DHMEQ, an inhibitor of NFκB translocation which has been used extensively both in vitro and in vivo. Effects of the two inhibitors were assessed by BrdU proliferation assay and multiparameter viability assay. NFKBIA was shown to be 12-fold overexpressed in cisplatin-resistant cells, with no mutations present in exons 3, 4, or 5 of the gene. Corresponding overexpression of IκBα was also observed. Treatment with DHMEQ (but not GDC-0980) led to significantly enhanced effects on viability and proliferation in cisplatin-resistant cells compared with parent cells. We conclude that NFκB inhibition represents a more promising strategy than PI3K–mTOR inhibition for treatment in the chemoresistance setting in NSCLC
    corecore