41 research outputs found

    Revisiting Formal Copper(III) Complexes:Bridging Perspectives with <i>Quasi-d<sup>10</sup></i> Configurations

    Get PDF
    The formal Cu(III) complex [Cu(CF(3))(4)](1−) has often served as a paradigmatic example of challenging oxidation state assignment – with many reports proposing conflicting descriptions. Here we report a computational analysis of this compound, employing Energy Decomposition Analysis and Intrinsic Bond Orbital Analysis. We present a quasi‐d ( 10 ) perspective of the metal centre, resulting from ambiguities in d‐electron counting. The implications for describing reactions which undergo oxidation state changes, such as the formal reductive elimination from the analogous [Cu(CF(3))(3)(CH(2)Ph)](1−) complex (Paeth et al. J. Am. Chem. Soc. 2019, 141, 3153), are probed. Electron flow analysis finds that the changes in electronic structure may be understood as a quasi‐d ( 10 ) to d ( 10 ) transition at the metal centre, rendering this process essentially redox neutral. This is reminiscent of a previously studied formal Ni(IV) complex (Steen et al., Angew. Chem. Int. Ed. 2019, 58, 13133–13139), and indicates that our description of electronic structure has implications for the understanding of elementary organometallic reaction steps

    Homolytic X-H Bond Cleavage at a Gold(III) Hydroxide:Insights into One-Electron Events at Gold

    Get PDF
    C(sp(3))-H and O-H bond breaking steps in the oxidation of 1,4-cyclohexadiene and phenol by a Au(III)-OH complex were studied computationally. The analysis reveals that for both types of bonds the initial X-H cleavage step proceeds via concerted proton coupled electron transfer (cPCET), reflecting electron transfer from the substrate directly to the Au(III) centre and proton transfer to the Au-bound oxygen. This mechanistic picture is distinct from the analogous formal Cu(III)-OH complexes studied by the Tolman group (J. Am. Chem. Soc. 2019, 141, 17236-17244), which proceed via hydrogen atom transfer (HAT) for C-H bonds and cPCET for O-H bonds. Hence, care should be taken when transferring concepts between Cu-OH and Au-OH species. Furthermore, the ability of Au-OH complexes to perform cPCET suggests further possibilities for one-electron chemistry at the Au centre, for which only limited examples exist

    Revisiting <i>sp<sup>2</sup></i> Dilithio Methandiides:From Geometric Curiosity to Simple Bonding Description

    Get PDF
    The reported tetracoordinate dilithio methandiide complex from Liddle and co-workers (1) is investigated from a coordination chemistry perspective, to probe the origin of its intriguing geometry. Through the application of a variety of computational techniques, non-covalent (steric, electrostatic) interactions are found to be dominant. Further, we arrive at a bonding description which emphasizes the tricoordinate sp2-hybridized nature of the central methandiide carbon, differing somewhat from the original proposal. Thus, 1 is distinct from other dilithio methandiides since it contains only one C−Li σ-bond, and is found to be comparable to a simple aryllithium compound, phenyllithium.</p

    Gold-Aluminyl and Gold-Diarylboryl Complexes:Bonding and Reactivity with Carbon Dioxide

    Get PDF
    The unconventional carbon dioxide insertion reaction of a gold-aluminyl [tBu3PAuAl(NON)] complex has been recently shown to be related to the electron-sharing character of the Au-Al bond that acts as a nucleophile and stabilizes the insertion product through a radical-like behavior. Since a gold-diarylboryl [IPrAuB(o-tol)2] complex with similar reactivity features has been recently reported, in this work we computationally investigate the reaction of carbon dioxide with [LAuX] (L = phosphine, N-heterocyclic carbene (NHC); X = Al(NON), B(o-tol)2) complexes to get insights into the Al/B anionic and gold ancillary ligand effects on the Au-Al/B bond nature, electronic structure, and reactivity of these compounds. We demonstrate that the Au-Al and Au-B bonds possess a similar electron-sharing nature, with diarylboryl complexes displaying a slightly more polarized bond as Au(δ+)-B(δ-). This feature reduces the radical-like reactivity toward CO2, and the Al/B anionic ligand effect is found to favor aluminyls over boryls, despite the greater oxophilicity of B. Remarkably, the ancillary ligand of gold has a negligible electronic trans effect on the Au-X bond and only a minor impact on the formation of the insertion product, which is slightly more stable with carbene ligands. Surprisingly, we find that the modification of the steric hindrance at the carbene site may exert a sizable control over the reaction, with more sterically hindered ligands thermodynamically disfavoring the formation of the CO2 insertion product

    How reduced are nucleophilic gold complexes?

    Get PDF
    Nucleophilic formal gold(-i) and gold(i) complexes are investigated via Intrinsic Bond Orbital analysis and Energy Decomposition Analysis, based on density functional theory calculations. The results indicate gold(0) centres engaging in electron-sharing bonding with Al- and B- based ligands. Multiconfigurational (CASSCF) calculations corroborate the findings, highlighting the gap between the electonic structures and the oxidation state formalism

    Modelling structural properties of cyanine dye nanotubes at coarse-grained level

    Get PDF
    Self-assembly is a ubiquitous process spanning from biomolecular aggregates to nanomaterials. Even though the resulting aggregates can be studied through experimental techniques, the dynamic pathways of the process and the molecular details of the final structures are not necessarily easy to resolve. Consequently, rational design of self-assembling aggregates and their properties remains extremely challenging. At the same time, modelling the self-assembly with computational methods is not trivial, because its spatio-temporal scales are usually beyond the limits of all-atom based simulations. The use of coarse-grained (CG) models can alleviate this limitation, but usually suffers from the lack of optimised parameters for the molecular constituents. In this work, we describe the procedure of parametrizing a CG Martini model for a cyanine dye (C8S3) that self-assembles into hollow double-walled nanotubes. First, we optimised the model based on quantum mechanics calculations and all-atom reference simulations, in combination with available experimental data. Then, we conducted random self-assembly simulations, and the performance of our model was tested on preformed assemblies. Our simulations provide information on the time-dependent local arrangement of this cyanine dye, when aggregates are being formed. Furthermore, we provide guidelines for designing and optimising parameters for similar self-assembling nanomaterials

    Coverage-controlled polymorphism of H-bonded networks on Au(111)

    Get PDF
    We report on the self-assembly of a conformational flexible organic compound on Au(111) using scanning tunneling microscopy and low-energy electron diffraction measurements. We observed different conformers of the compound upon adsorption on the reconstructed Au(111) surface. Increasing the molecular coverage enhanced the lateral pressure, that is, parallel to the surface, favoring a coverage-controlled transition from a supramolecular network displaying only one molecular organization, into a polymorphic array with two coexisting arrangements. Our results give insights into the role of substrate-induced conformational changes on the formation of polymorphic supramolecular networks

    Electronic Control of Spin-Crossover Properties in Four-Coordinate Bis(formazanate) Iron(II) Complexes

    Get PDF
    The transition between spin states in d-block metal complexes has important ramifications for their structure and reactivity, with applications ranging from information storage materials to understanding catalytic activity of metalloenzymes. Tuning the ligand field (Delta(O)) by steric and/or electronic effects has provided spin-crossover compounds for several transition metals in the periodic table, but this has mostly been limited to coordinatively saturated metal centers in octahedral ligand environments. Spin-crossover complexes with low coordination numbers are much rarer. Here we report a series of four-coordinate, (pseudo)tetrahedral Fe(II) complexes with formazanate ligands and demonstrate how electronic substituent effects can be used to modulate the thermally induced transition between S = 0 and S = 2 spin states in solution. All six compounds undergo spin-crossover in solution with T-1/2 above room temperature (300-368 K). While structural analysis by X-ray crystallography shows that the majority of these compounds are low-spin in the solid state (and remain unchanged upon heating), we find that packing effects can override this preference and give rise to either rigorously high-spin (6) or gradual spin-crossover behavior (5) also in the solid state. Density functional theory calculations are used to delineate the empirical trends in solution spin-crossover thermodynamics. In all cases, the stabilization of the low-spin state is due to the pi-acceptor properties of the formazanate ligand, resulting in an "inverted" ligand field, with an approximate "two-over-three" splitting of the d-orbitals and a high degree of metal-ligand covalency due to metal -> ligand pi-backdonation. The computational data indicate that the electronic nature of the para-substituent has a different influence depending on whether it is present at the C-Ar or N-Ar rings, which is ascribed to the opposing effect on metal-ligand sigma- and pi-bonding

    Strategies for Enhancing the Dielectric Constant of Organic Materials

    Get PDF
    High dielectric constant organic semiconductors, often obtained by the use of ethylene glycol (EG) side chains, have gained attention in recent years in the efforts of improving the device performance for various applications. Dielectric constant enhancements due to EGs have been demonstrated extensively, but various effects, such as the choice of the particular molecule and the frequency and temperature regime, that determine the extent of this enhancement require further understanding. In this work, we study these effects by means of polarizable molecular dynamics simulations on a carefully selected set of fullerene derivatives with EG side chains. The selection allows studying the dielectric response in terms of both the number and length of EG chains and also the choice of the group connecting the fullerene to the EG chain. The computed time- and frequency-dependent dielectric responses reveal that the experimentally observed rise of the dielectric constant within the kilo/megahertz regime for some molecules is likely due to the highly stretched dielectric response of the EGs: the initial sharp increase over the first few nanoseconds is followed by a smaller but persistent increase in the range of microseconds. Additionally, our computational protocol allows the separation of different factors that contribute to the overall dielectric constant, providing insights to make several molecular design guides for future organic materials in order to enhance their dielectric constant further

    Magnetic fingerprint of dithiazolyl-based molecule magnets

    Get PDF
    Magnetic bistability in organic-radical based materials has attracted significant interest due to its potential application in electronic devices. The First-Principles Bottom-Up study herein presented aims at elucidating the key factors behind the different magnetic response of the low and high temperature phases of four different switchable dithiazolyl (DTA)-based compounds. The drastic change in the magnetic response upon spin transition is always due to changes in the JAB magnetic interactions between adjacent radicals along the π-stacks of the crystal, which in turn are driven mostly by changes in interplanar distance and degree of lateral slippage, according to the interpretation of a series of magneto-structural correlation maps. Furthermore, specific geometrical dispositions have been recognized as a ferromagnetic fingerprint in such correlations. Our results thus show that a proper substitution of the chemical skeleton attached to the DTA ring could give rise to new organic materials with dominant ferromagnetic interactions
    corecore