20,890 research outputs found

    Computational Fluid Mechanics

    Get PDF
    A one-equation turbulence model based on the turbulent kinetic energy equation is presented. The model is motivated by the success of the Johnson-King model and incorporates a number of features uncovered by Simpson's experiments on separated flows. Based on the results obtained, the model duplicates the success of algebraic models in attached flow regions and outperforms the two-equation models in detached flow regions

    Physics on aircraft wakes

    Get PDF
    The roll-up of a vortex sheet is analyzed by two approaches. The first is based on exact compressible Euler equations while the second is based on the exact incompressible Navier-Stokes equations. The inviscid calculations for the two-dimensional problem do not indicate any roll-up of the sheet. On the other hand, the viscous calculations capture the dynamics of the roll-up rather well. This suggests that the generally held views regarding the roll-up process of aircraft wakes, namely, that it be treated as an inviscid process, may not be completely accurate

    Nongrey radiation effects on the boundary layer of an absorbing gas over a flat plate

    Get PDF
    Nongrey radiation effects on boundary layer of absorbing gas over flat plat

    Modeling of turbulent supersonic H2-air combustion with an improved joint beta PDF

    Get PDF
    Attempts at modeling recent experiments of Cheng et al. indicated that discrepancies between theory and experiment can be a result of the form of assumed probability density function (PDF) and/or the turbulence model employed. Improvements in both the form of the assumed PDF and the turbulence model are presented. The results are again used to compare with measurements. Initial comparisons are encouraging

    Analysis of plasmas generated by fission fragments

    Get PDF
    A kinetic model is developed for a plasma generated by fission fragments and the results are employed to study helium plasma generated in a tube coated with fissionable material. Because both the heavy particles and electrons play important roles in creating the plasma, their effects are considered simultaneously. The calculations are carried out for a range of neutron fluxes and pressures. In general, the predictions of the theory are in good agreement with available intensity measurements. Moreover, the theory predicts the experimentally measured inversions. However, the calculated gain coefficients are such that lasing is not expected to take place in a helium plasma generated by fission fragments. The effects of an externally applied electric field are also considered

    Theoretical investigation of liquid water injection into the shock layer of a reentry vehicle

    Get PDF
    Mathematical model for flow field of liquid spray injected into supersonic air streaming past blunt bod

    The electron Boltzmann equation in a plasma generated by fission fragments

    Get PDF
    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material show that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux but increases sharply in the presence of a sustainer electric field

    Thermodynamic properties of UF6 at high temperatures

    Get PDF
    The equilibrium composition and the thermodynamic properties of the mixture resulting from the decomposition of uranium hexafluoride is calculated for temperatures ranging from 600 K to 4000 K at pressures from 0.01 atmospheres to 10 atmospheres
    • …