92,629 research outputs found

    Boundary conditions in the Dirac approach to graphene devices

    Full text link
    We study a family of local boundary conditions for the Dirac problem corresponding to the continuum limit of graphene, both for nanoribbons and nanodots. We show that, among the members of such family, MIT bag boundary conditions are the ones which are in closest agreement with available experiments. For nanotubes of arbitrary chirality satisfying these last boundary conditions, we evaluate the Casimir energy via zeta function regularization, in such a way that the limit of nanoribbons is clearly determined.Comment: 10 pages, no figure. Section on Casimir energy adde

    Supersolid and charge density-wave states from anisotropic interaction in an optical lattice

    Full text link
    We show anisotropy of the dipole interaction between magnetic atoms or polar molecules can stabilize new quantum phases in an optical lattice. Using a well controlled numerical method based on the tensor network algorithm, we calculate phase diagram of the resultant effective Hamiltonian in a two-dimensional square lattice - an anisotropic Hubbard model of hard-core bosons with attractive interaction in one direction and repulsive interaction in the other direction. Besides the conventional superfluid and the Mott insulator states, we find the striped and the checkerboard charge density wave states and the supersolid phase that interconnect the superfluid and the striped solid states. The transition to the supersolid phase has a mechanism different from the case of the soft-core Bose Hubbard model.Comment: 5 pages, 5 figures

    Automatic collision avoidance of ships

    Get PDF
    One of the key elements in automatic simulation of ship manoeuvring in confined waterways is route finding and collision avoidance. This paper presents a new practical method of automatic trajectory planning and collision avoidance based on an artificial potential field and speed vector. Collision prevention regulations and international navigational rules have been incorporated into the algorithm. The algorithm is fairly straightforward and simple to implement, but has been shown to be effective in finding safe paths for all ships concerned in complex situations. The method has been applied to some typical test cases and the results are very encouraging
    corecore