28 research outputs found

    Measurement of neutrino and antineutrino neutral-current quasielasticlike interactions on oxygen by detecting nuclear deexcitation γ rays

    Get PDF
    Neutrino- and antineutrino-oxygen neutral-current quasielastic-like interactions are measured at Super-Kamiokande using nuclear de-excitation γ\gamma-rays to identify signal-like interactions in data from a $14.94 \ (16.35)\times 10^{20}protonsontargetexposureoftheT2Kneutrino(antineutrino)beam.Themeasuredfluxaveragedcrosssectionsonoxygennucleiare protons-on-target exposure of the T2K neutrino (antineutrino) beam. The measured flux-averaged cross sections on oxygen nuclei are \langle \sigma_{\nu {\rm -NCQE}} \rangle = 1.70 \pm 0.17 ({\rm stat.}) ^{+ {\rm 0.51}}_{- {\rm 0.38}} ({\rm syst.}) \times 10^{-38} \ {\rm cm^2/oxygen}withafluxaveragedenergyof0.82GeVand with a flux-averaged energy of 0.82 GeV and \langle \sigma_{\bar{\nu} {\rm -NCQE}} \rangle = 0.98 \pm 0.16 ({\rm stat.}) ^{+ {\rm 0.26}}_{- {\rm 0.19}} ({\rm syst.}) \times 10^{-38} \ {\rm cm^2/oxygen}$ with a flux-averaged energy of 0.68 GeV, for neutrinos and antineutrinos, respectively. These results are the most precise to date, and the antineutrino result is the first cross section measurement of this channel. They are compared with various theoretical predictions. The impact on evaluation of backgrounds to searches for supernova relic neutrinos at present and future water Cherenkov detectors is also discussed

    Measurement of the muon neutrino charged-current cross sections on water, hydrocarbon and iron, and their ratios, with the T2K on-axis detectors

    Get PDF
    We report a measurement of the flux-integrated νμ charged-current cross sections on water, hydrocarbon, and iron in the T2K on-axis neutrino beam with a mean neutrino energy of 1.5 GeV. The measured cross sections on water, hydrocarbon, and iron are σH2OCC=(0.840±0.010(stat.)+0.10−0.08(syst.))×10−38cm2/nucleon, σCHCC=(0.817±0.007(stat.)+0.11−0.08(syst.))×10−38cm2/nucleon, and σFeCC=(0.859±0.003(stat.)+0.12−0.10(syst.))×10−38cm2/nucleon, respectively, for a restricted phase space of induced muons: θμ0.4 GeV/c in the laboratory frame. The measured cross section ratios are σH2OCC/σCHCC=1.028±0.016(stat.)±0.053(syst.)⁠, σFeCC/σH2OCC=1.023±0.012(stat.)±0.058(syst.)⁠, and σFeCC/σCHCC=1.049±0.010(stat.)±0.043(syst.)⁠. These results, with an unprecedented precision for the measurements of neutrino cross sections on water in the studied energy region, show good agreement with the current neutrino interaction models used in the T2K oscillation analyses

    Search for heavy neutrinos with the T2K near detector ND280

    No full text

    First measurement of the charged current νμ\overline{\nu}_{\mu} double differential cross section on a water target without pions in the final state

    No full text

    Search for Electron Antineutrino Appearance in a Long-Baseline Muon Antineutrino Beam

    No full text

    Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K

    Get PDF
    This paper reports the first simultaneous measurement of the double differential muon neutrino charged-current cross section on oxygen and carbon without pions in the final state as a function of the outgoing muon kinematics, made at the ND280 off-axis near detector of the T2K experiment. The ratio of the oxygen and carbon cross sections is also provided to help validate various models’ ability to extrapolate between carbon and oxygen nuclear targets, as is required in T2K oscillation analyses. The data are taken using a neutrino beam with an energy spectrum peaked at 0.6 GeV. The extracted measurement is compared with the prediction from different Monte Carlo neutrino-nucleus interaction event generators, showing particular model separation for very forward-going muons. Overall, of the models tested, the result is best described using local Fermi gas descriptions of the nuclear ground state with RPA suppression
    corecore