61 research outputs found

    Protein quality control and aggregation in the endoplasmic reticulum: From basic to bedside

    Get PDF
    Endoplasmic reticulum (ER) is the largest membrane-bound compartment in all cells and functions as a key regulator in protein biosynthesis, lipid metabolism, and calcium balance. Mammalian endoplasmic reticulum has evolved with an orchestrated protein quality control system to handle defective proteins and ensure endoplasmic reticulum homeostasis. Nevertheless, the accumulation and aggregation of misfolded proteins in the endoplasmic reticulum may occur during pathological conditions. The inability of endoplasmic reticulum quality control system to clear faulty proteins and aggregates from the endoplasmic reticulum results in the development of many human disorders. The efforts to comprehensively understand endoplasmic reticulum quality control network and protein aggregation will benefit the diagnostics and therapeutics of endoplasmic reticulum storage diseases. Herein, we overview recent advances in mammalian endoplasmic reticulum protein quality control system, describe protein phase transition model, and summarize the approaches to monitor protein aggregation. Moreover, we discuss the therapeutic applications of enhancing endoplasmic reticulum protein quality control pathways in endoplasmic reticulum storage diseases

    Characterization and evaluation of 25 MV electronic portal imaging for accurate localization of intra- and extracranial stereotactic radiosurgery

    Get PDF
    2.5 MV electronic portal imaging, available on Varian TrueBeam machines, was characterized using various phantoms in this study. Its low-contrast detectability, spatial resolution, and contrast-to-noise ratio (CNR) were compared with those of conventional 6 MV and kV planar imaging. Scatter effect in large patient body was simulated by adding solid water slabs along the beam path. The 2.5 MV imaging mode was also evaluated using clinically acquired images from 24 patients for the sites of brain, head and neck, lung, and abdomen. With respect to 6 MV, the 2.5 MV achieved higher contrast and preserved sharpness on bony structures with only half of the imaging dose. The quality of 2.5 MV imaging was comparable to that of kV imaging when the lateral separation of patient was greater than 38 cm, while the kV image quality degraded rapidly as patient separation increased. Based on the results of patient images, 2.5 MV imaging was better for cranial and extracranial SRS than the 6 MV imaging

    How does CBCT reconstruction algorithm impact on deformably mapped targets and accumulated dose distributions?

    Get PDF
    PURPOSE: We performed quantitative analysis of differences in deformable image registration (DIR) and deformable dose accumulation (DDA) computed on CBCT datasets reconstructed using the standard (Feldkamp-Davis-Kress: FDK_CBCT) and a novel iterative (iterative_CBCT) CBCT reconstruction algorithms. METHODS: Both FDK_CBCT and iterative_CBCT images were reconstructed for 323 fractions of treatment for 10 prostate cancer patients. Planning CT images were deformably registered to each CBCT image data set. After daily dose distributions were computed, they were mapped to planning CT to obtain deformed doses. Dosimetric and image registration results based CBCT images reconstructed by two algorithms were compared at three levels: (A) voxel doses over entire dose calculation volume, (B) clinical constraint results on targets and sensitive structures, and (C) contours propagated to CBCT images using DIR results based on three algorithms (SmartAdapt, Velocity, and Elastix) were compared with manually delineated contours as ground truth. RESULTS: (A) Average daily dose differences and average normalized DDA differences between FDK_CBCT and iterative_CBCT were ≤1 cGy. Maximum daily point dose differences increased from 0.22 ± 0.06 Gy (before the deformable dose mapping operation) to 1.33 ± 0.38 Gy after the deformable dose mapping. Maximum differences of normalized DDA per fraction were up to 0.80 Gy (0.42 ± 0.19 Gy). (B) Differences in target minimum doses were up to 8.31 Gy (-0.62 ± 4.60 Gy) and differences in critical structure doses were 0.70 ± 1.49 Gy. (C) For mapped prostate contours based on iterative_CBCT (relative to standard FDK_CBCT), dice similarity coefficient increased by 0.10 ± 0.09 (p \u3c 0.0001), mass center distances decreased by 2.5 ± 3.0 mm (p \u3c 0.00005), and Hausdorff distances decreased by 3.3 ± 4.4 mm (p \u3c 0.00015). CONCLUSIONS: The new iterative CBCT reconstruction algorithm leads to different mapped volumes of interest, deformed and cumulative doses than results based on conventional FDK_CBCT

    Characteristics of a novel treatment system for linear accelerator–based stereotactic radiosurgery

    Get PDF
    The purpose of this study is to characterize the dosimetric properties and accuracy of a novel treatment platform (Edge radiosurgery system) for localizing and treating patients with frameless, image-guided stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). Initial measurements of various components of the system, such as a comprehensive assessment of the dosimetric properties of the flattening filter-free (FFF) beams for both high definition (HD120) MLC and conical cone-based treatment, positioning accuracy and beam attenuation of a six degree of freedom (6DoF) couch, treatment head leakage test, and integrated end-to-end accuracy tests, have been performed. The end-to-end test of the system was performed by CT imaging a phantom and registering hidden targets on the treatment couch to determine the localization accuracy of the optical surface monitoring system (OSMS), cone-beam CT (CBCT), and MV imaging systems, as well as the radiation isocenter targeting accuracy. The deviations between the percent depth-dose curves acquired on the new linac-based system (Edge), and the previously published machine with FFF beams (TrueBeam) beyond Dmax were within 1.0% for both energies. The maximum deviation of output factors between the Edge and TrueBeam was 1.6%. The optimized dosimetric leaf gap values, which were fitted using Eclipse dose calculations and measurements based on representative spine radiosurgery plans, were 0.700 mm and 1.000 mm, respectively. For the conical cones, 6X FFF has sharper penumbra ranging from 1.2–1.8 mm (80%-20%) and 1.9–3.8 mm (90%-10%) relative to 10X FFF, which has 1.2–2.2mm and 2.3–5.1mm, respectively. The relative attenuation measurements of the couch for PA, PA (rails-in), oblique, oblique (rails-out), oblique (rails-in) were: -2.0%, -2.5%, -15.6%, -2.5%, -5.0% for 6X FFF and -1.4%, -1.5%, -12.2%, -2.5%, -5.0% for 10X FFF, respectively, with a slight decrease in attenuation versus field size. The systematic deviation between the OSMS and CBCT was -0.4 ± 0.2 mm, 0.1± 0.3mm, and 0.0 ± 0.1 mm in the vertical, longitudinal, and lateral directions. The mean values and standard deviations of the average deviation and maximum deviation of the daily Winston-Lutz tests over three months are 0.20 ± 0.03 mm and 0.66 ± 0.18 mm, respectively. Initial testing of this novel system demonstrates the technology to be highly accurate and suitable for frameless, linac-based SRS and SBRT treatment

    Adaptive Control for a Class of Nonlinear System with Redistributed Models

    Get PDF
    Multiple model adaptive control has been investigated extensively during the last ten years in which the “switching” or “switching and tuning” have emerged as the mainly approaches. It is the “switching” that can improve the transient performance to some extent and also make it difficult to analyze the stability of the system with multiple models adaptive controller. Towards this goal, this paper develops a novel multiple models adaptive controller for a class of nonlinear system in parameter-strict-feedback form which not only improves the transient performance significantly, but also guarantees the stability of all the states of the closed-loop system. A simulation example is proposed to illustrate the effectiveness of the developed multiple models adaptive controller

    Protein Aggregation in the ER: Calm behind the Storm

    No full text
    As one of the largest organelles in eukaryotic cells, the endoplasmic reticulum (ER) plays a vital role in the synthesis, folding, and assembly of secretory and membrane proteins. To maintain its homeostasis, the ER is equipped with an elaborate network of protein folding chaperones and multiple quality control pathways whose cooperative actions safeguard the fidelity of protein biogenesis. However, due to genetic abnormalities, the error-prone nature of protein folding and assembly, and/or defects or limited capacities of the protein quality control systems, nascent proteins may become misfolded and fail to exit the ER. If not cleared efficiently, the progressive accumulation of misfolded proteins within the ER may result in the formation of toxic protein aggregates, leading to the so-called “ER storage diseases”. In this review, we first summarize our current understanding of the protein folding and quality control networks in the ER, including chaperones, unfolded protein response (UPR), ER-associated protein degradation (ERAD), and ER-selective autophagy (ER-phagy). We then survey recent research progress on a few ER storage diseases, with a focus on the role of ER quality control in the disease etiology, followed by a discussion on outstanding questions and emerging concepts in the field