8 research outputs found

    Metode Pengenalan Tempat Secara Visual Berbasis Fitur CNN untuk Navigasi Robot di Dalam Gedung

    Get PDF
    Place recognition algorithm based-on visual sensor is crucial to be developed especially for an application of indoor robot navigation in which a Ground Positioning System (GPS) is not reliable to be utilized. This research compares the approach of place recognition of using learned-features from a model of Convolutional Neural Network (CNN) against conventional methods, such as Bag of Words (BoW) with SIFT features and Histogram of Oriented Uniform Patterns (HOUP) with its Local Binary Patterns (LBP). This research finding shows that the performance of our approach of using learned-features with transfer learning method from pre-trained CNN AlexNet is better than the conventional methods based-on handcrafted-features such as BoW and HOUP.Algoritma pengenalan tempat berbasiskan sensor visual penting untuk dikembangkan, terutama untuk aplikasi navigasi robot di dalam gedung dimana Ground Positioning System (GPS) tidak reliabel untuk digunakan. Penelitian ini membandingkan antara pendekatan berbasiskan learned-features yang diperoleh dari model Convolutional Neural Network (CNN), terhadap metode konvensional berbasis handcrafted-features, seperti Bag of Words (BoW) dengan fitur SIFT dan Histogram of Oriented Uniform Patterns (HOUP) dengan Local Binary Patterns (LBP). Hasil pengujian menunjukkan bahwa performa pendekatan learned-features dengan metode transfer learning pada pre-trained CNN AlexNet memiliki performa yang lebih baik dibandingkan metode konvensional berbasis handcrafted features seperti BoW dan HOUP


    No full text
    Camera as the main sensor in mobile robot has a role as position sensor to navigate the robot. By extracting point features from the environment�s images, robot builds the 3D map of its environment by doing localisation and mapping. The aims of this research are both to design and to simulate computer vision algorithm for pose estimation and simple monocular SLAM to understand basic principles of multiple view geometry for visual-based mobile robot. The focus of this research is to discuss the camera and the transformation of image within monocular SLAM. The method of pose estimation and monocular SLAM use multiple view geometry approach included (1) corner detection, (2) matching, and (3) position estimation. According to the results of this research, pose estimation was successfully done to sample images with small mean estimation error (2.9 mm for distance estimation and 0.30833° for angle estimation). Then for simple monocular SLAM simulation, several point features were well-mapped consistently using 1100 image sequences

    Sistem kendali kestabilan attitude quadrotor dengan metode self-tuning Fuzzy-PD

    Get PDF
    This research aims to develop a quadrotor control system for maintaining its position and balance from disturbance while hovering. A fast and reliable control technique is required to respond to high maneuverability and high non-linearity of six degrees of freedom system. Hence, this research focuses on designing a Self-Tuning Fuzzy-PD control system for quadrotor’s attitude. The designed control system utilizes input data from the Inertial Navigation System (INS). Then the quadrotor’s attitude is controlled by passing the PWM signal to the flight controller APM 2.6. The result shows that the average absolute error for the roll, pitch, and yaw angles are relatively small, as mentioned consecutively 2.079o, 2.266o, and 1.528o, while the maximum absolute errors are 6.314o, 6.722o, and 3.82o.Penelitian ini bertujuan mengembangkan sistem pengendalian attitude quadrotor dalam mempertahankan posisi dan keseimbangan terhadap gangguan pada saat terbang (hovering). Quadrotor membutuhkan sistem kendali non-linear yang handal dan cepat pada kondisi hovering untuk melakukan respons terhadap manuver yang tinggi pada sistem dengan enam derajat kebebasan, sehingga penelitian ini berfokus untuk merancang dan menguji sistem kendali Self-Tuning Fuzzy-PD untuk kendali attitude quadrotor. Sistem kendali quadrotor dirancang menggunakan data input dari INS (Inertial Navigation System). Selanjutnya pengendalian attitude quadrotor dilakukan dengan meneruskan output sinyal PWM hasil komputasi ke flight controller APM 2.6. Berdasarkan hasil pengujian, diperoleh rata-rata galat absolut yang cukup kecil untuk sudut roll, pitch, dan yaw secara berurutan sebesar 2,079o, 2,266o, dan 1,528o, sedangkan galat absolut maksimalnya sebesar 6,314o, 6,722o, dan 3,82o

    Experimental study of the control of operating modes of a plate feeder based on the frequency-controlled electric drive

    No full text
    An experimental study of the control of the operating modes of the plate feeder based on a frequency-controlled electric drive in the mining industry has been carried out. The graphs of measurements of the electrical parameters of the electric drive supplied from the frequency converter of the plastic feeder, instantaneous values of harmonic composition of voltage and current up to 50 harmonics, as well as changes in current and voltage harmonics over a period of 30 minutes were obtained. Measurement of oscillograms of voltage and current of each phase in operating mode and the moment of turning off and turning on the electric motor of the plastic feeder. The issues of control of starting modes of the plate feeder from frequency-controlled electric drives are considered. It has been determined that frequency start-up with the linear control law for the frequency of the plate feeder as a function of time and technological parameters are the most acceptable condition for starting modes


    No full text
    kodingworks merupakan sebuah perusahaan yang menggunakan sistem software as a service (saas), yang artinya perusahaan lebih fokus membuat pelayanan dari aplikasi dan bukan menjual aplikasinya. salah satu fokus kodingworks sebagai penyedia perangkat lunak adalah bagaimana perangkat lunak tersebut dapat berkomunikasi dengan pelanggan melalui antarmuka yang mudah digunakan dan nyaman dilihat, hal ini merupakan proses dari pengembangan antarmuka yang ditanggungjawabi oleh seorang atau tim pengembang. salah satu metode untuk membuat antarmuka adalah menggunakan metode membuat prototipe. hasil dari protipe merupakan sebuah aplikasi yang sudah berfungsi dan dapat disebarkan di website,yang nantinya akan di tes oleh tim pengetes. dalam pembuatannya terdapat alur yang sudah direncakan oleh perusahaan untuk mencegah terjadinya kesalahan dan memastikan keluaran produk yang dikeluarkan sesuai dengan standar yang berlaku di pasaran.kata-kunci : pelayanan, pengembangan antarmuka, prototipe, website, perangkat lunak

    Optimization of Computational Resources for Real-Time Product Quality Assessment Using Deep Learning and Multiple High Frame Rate Camera Sensors

    No full text
    Human eyes generally perform product defect inspection in Indonesian industrial production lines; resulting in low efficiency and a high margin of error due to eye tiredness. Automated quality assessment systems for mass production can utilize deep learning connected to cameras for more efficient defect detection. However, employing deep learning on multiple high frame rate cameras (HFRC) causes the need for much computation and decreases deep learning performance, especially in the real-time inspection of moving objects. This paper proposes optimizing computational resources for real-time product quality assessment on moving cylindrical shell objects using deep learning with multiple HFRC Sensors. Two application frameworks embedded with several deep learning models were compared and tested to produce robust and powerful applications to assess the quality of production results on rotating objects. Based on the experiment results using three HFRC Sensors, a web-based application with tensorflow.js framework outperformed desktop applications in computation. Moreover, MobileNet v1 delivers the highest performance compared to other models. This result reveals an opportunity for a web-based application as a lightweight framework for quality assessment using multiple HFRC and deep learning