7 research outputs found

    Contemporary, decadal, and millennial-scale permafrost- and vegetation dynamics and carbon release in an alpine region of Jotunheimen, Norway

    Get PDF
    Climatic warming in northern alpine regions facilitates the thawing of permafrost, the associated release of soil carbon into the atmosphere, and the altitudinal shifts in vegetation patterns. Here, a multi-disciplinary approach is adopted to investigate the response of an alpine permafrost landscape (Jotunheimen, Norway, with focus on Galdhøpiggen) to climatic changes over long- to medium timescales. First, a gas analyser is used to explore how ecosystem respiration is affected by ecosystem (soil and vegetation) and geomorphological (cryogenic disturbance) factors during the peak growing season. A palaeoecological record is then analysed to infer the past dynamics of the alpine tree lines and the lower limit of permafrost on Galdhøpiggen over the millennial- and centennial scales. Finally, remotely sensed satellite imagery is combined with observed air temperatures to create a model that provides an estimation of land surface temperatures over the past six decades. The model is then used to predict surface ‘greenness’ over the same period. Palynological evidence from Galdhøpiggen indicates that the altitudinal limits of alpine tree lines have shifted by hundreds of metres in response to climatic changes over the millennial scale. Since 1957, the model predictions indicate substantial increases in land surface temperatures and growing season surface ‘greenness’ (i.e., vegetation abundance) in Jotunheimen, but the change has not been spatially uniform. The highest increases were recorded over the low- and mid-alpine heaths above the tree line (1050-1500 m a.s.l.), which was attributed to increased shrub cover. This trend could facilitate carbon release from the ground, as peak growing season ecosystem respiration was found to be most strongly controlled by soil microclimate and plant growth forms. The likely future scenario in response to warming in Jotunheimen will be continued permafrost degradation, with higher altitudes (≥1500 m a.s.l.) experiencing decreased cryoturbation, increased shrub encroachment and higher surface CO2 emissions

    Snow-avalanche boulder fans in Jotunheimen, southern Norway: Schmidt-hammer exposure-age dating, geomorphometrics, dynamics and evolution

    Get PDF
    Eleven snow-avalanche boulder fans were dated from two high-alpine sites in Jotunheimen using Schmidt-hammer exposure-age dating (SHD) and lichenometry. Average exposure ages of the surface boulders ranged from 2285 ± 725 to 7445 ± 1020 years and demonstrate the potential of SHD for dating active landforms and diachronous surfaces. Application of GIS-based morphometric analyses showed that the volume of rock material within 10 of the fans is accounted for by 16-68 % of the combined volume of their respective bedrock chutes and transport zones. It is inferred that the fans were deposited entirely within the Holocene, mainly within the early- to mid Holocene, by frequent avalanches carrying very small debris loads. Relatively small transport-zone volumes are consistent with avalanches of low erosivity. Excess chute volumes appear to represent subaerial erosion in the Younger Dryas and possibly earlier. Debris supply to the fans was likely enhanced by early-Holocene paraglacial processes following deglaciation, and by later permafrost degradation associated with the mid-Holocene Thermal Maximum. The latter, together with the youngest SHD age from one of the fans, may presage a similar increase in geomorphic activity in response to current warming trends

    Age and development of active cryoplanation terraces in the alpine permafrost zone at Svartkampan, Jotunheimen, southern Norway

    Get PDF
    Schmidt-hammer exposure-age dating (SHD) of boulders on cryoplanation terrace treads and associated bedrock cliff faces revealed Holocene ages ranging from 0 ± 825 to 8890 ± 1185 yr. The cliffs were significantly younger than the inner treads, which tended to be younger than the outer treads. Radiocarbon dates from the regolith of 3854 to 4821 cal yr BP (2σ range) indicated maximum rates of cliff recession of ~0.1 mm/year, which suggests the onset of terrace formation prior to the last glacial maximum. Age, angularity and size of clasts, together with planation across bedrock structures and the seepage of groundwater from the cliff foot, all support a process-based conceptual model of cryoplanation terrace development in which frost weathering leads to parallel cliff recession and hence terrace extension. The availability of groundwater during autumn freeze-back is viewed as critical for frost wedging and/or the growth of segregation ice during prolonged winter frost penetration. Permafrost promotes cryoplanation by providing an impermeable frost table beneath the active layer, focusing groundwater flow, and supplying water for sediment transport by solifluction across the tread. Snowbeds are considered an effect rather than a cause of cryoplanation terraces and cryoplanation is seen as distinct from nivation

    Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target

    Get PDF
    Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. β-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP. KEYWORDS: Craniopharyngioma; IL1-β; Inflammasome; MAPK/ERK pathway; Odontogenesis; Paracrine signalling; Trametini

    Tree line shifts, changing vegetation assemblages and permafrost dynamics on Galdhøpiggen (Jotunheimen, Norway) over the past ~4400 years

    No full text
    An environmental reconstruction based on palynological evidence preserved in peat was carried out to examine late-Holocene alpine tree line dynamics in the context of past climatic changes on Galdhøpiggen (Jotunheimen, southern Norway). We analysed a peat core taken from a mire at the present-day tree line (1000 m a.s.l.), c. 450 m downslope from the lower limit of sporadic permafrost. We adopted a combination of commonly used indicators of species’ local presence to reconstruct past vegetation assemblages, such as the relative pollen abundance (%), pollen accumulation rate (PAR), and presence of indicator species. Additionally, fossil pollen from the peat sequence was compared to modern pollen from a surface moss polster to establish a modern analogue. The results were compared with studies covering the late-Holocene climatic changes in the area. The reconstruction demonstrates that a pine-dominated woodland reached above the present-day tree line at c. 4300 cal. yr BP, suggesting a warmer climate suitable for Scots pine ( Pinus sylvestris) growth at this altitude. Scots pine retreated to lower altitudes between c. 3400 and 1700 cal. yr BP, accompanied by the descent of the low-alpine shrub-dominated belt, in response to cooling climatic conditions. The colder period covered c. 1700–170 cal. yr BP, and an open downy birch ( Betula pubescens) woodland became widespread at 1000 m a.s.l., whilst pine remained sparse at this altitude. From c. 170 cal. yr BP onwards, warming allowed pine to re-establish its local presence alongside downy birch at 1000 m a.s.l