47 research outputs found

    Price assymetry in the Dutch retail gasoline market

    Get PDF
    This paper analyses retail price adjustments in the Dutch gasoline market. We estimate an asymmetric error correction model on weekly price changes for the years 1996 to 2001. We construct five datasets, one for each working day. The conclusions on asymmetric pricing are shown to differ over these datasets, suggesting that the choice of the day for which prices are observed matters more than commonly believed. In our view, the insufficient robustness of outcomes might explain the mixed conclusions found in the literature. Using two approaches, we also show that the effect of asymmetry on Dutch consumer costs is negligible

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Smoking and Oxidative Stress: Vascular Damage

    No full text

    The Single-Phase ProtoDUNE Technical Design Report

    No full text
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report

    The Single-Phase ProtoDUNE Technical Design Report

    No full text
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report

    Long-baseline neutrino oscillation physics potential of the DUNE experiment: DUNE Collaboration

    No full text
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5ŌÉ, for all őīCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3ŌÉ (5ŌÉ) after an exposure of 5 (10) years, for 50% of all őīCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin 22 őł13 to current reactor experiments. ¬© 2020, The Author(s)

    Supernova neutrino burst detection with the deep underground neutrino experiment: DUNE Collaboration

    No full text
    The deep underground neutrino experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE‚Äôs ability to constrain the őĹe spectral parameters of the neutrino burst will be considered. ¬© 2021, The Author(s)

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies