18 research outputs found

    Genome-wide significant association with seven novel multiple sclerosis risk loci

    Get PDF
    Objective: A recent large-scale study in multiple sclerosis (MS) using the ImmunoChip platform reported on 11 loci that showed suggestive genetic association with MS. Additional data in sufficiently sized and independent data sets are needed to assess whether these loci represent genuine MS risk factors. Methods: The lead SNPs of all 11 loci were genotyped in 10 796 MS cases and 10 793 controls from Germany, Spain, France, the Netherlands, Austria and Russia, that were independent from the previously reported cohorts. Association analyses were performed using logistic regression based on an additive model. Summary effect size estimates were calculated using fixed-effect meta-analysis. Results: Seven of the 11 tested SNPs showed significant association with MS susceptibility in the 21 589 individuals analysed here. Meta-analysis across our and previously published MS case-control data (total sample size n=101 683) revealed novel genome-wide significant association with MS susceptibility (p<5×10−8) for all seven variants. This included SNPs in or near LOC100506457 (rs1534422, p=4.03×10−12), CD28 (rs6435203, p=1.35×10−9), LPP (rs4686953, p=3.35×10−8), ETS1 (rs3809006, p=7.74×10−9), DLEU1 (rs806349, p=8.14×10−12), LPIN3 (rs6072343, p=7.16×10−12) and IFNGR2 (rs9808753, p=4.40×10−10). Cis expression quantitative locus effects were observed in silico for rs6435203 on CD28 and for rs9808753 on several immunologically relevant genes in the IFNGR2 locus. Conclusions: This study adds seven loci to the list of genuine MS genetic risk factors and further extends the list of established loci shared across autoimmune diseases

    Genome-wide significant association with seven novel multiple sclerosis risk loci

    Get PDF
    Objective: A recent large-scale study in multiple sclerosis (MS) using the ImmunoChip platform reported on 11 loci that showed suggestive genetic association with MS. Additional data in sufficiently sized and independent data sets are needed to assess whether these loci represent genuine MS risk factors. Methods: The lead SNPs of all 11 loci were genotyped in 10 796 MS cases and 10 793 controls from Germany, Spain, France, the Netherlands, Austria and Russia, that were independent from the previously reported cohorts. Association analyses were performed using logistic regression based on an additive model. Summary effect size estimates were calculated using fixed-effect meta-analysis. Results: Seven of the 11 tested SNPs showed significant association with MS susceptibility in the 21 589 individuals analysed here. Meta-analysis across our and previously published MS case-control data (total sample size n=101 683) revealed novel genome-wide significant association with MS susceptibility (p<5×10−8) for all seven variants. This included SNPs in or near LOC100506457 (rs1534422, p=4.03×10−12), CD28 (rs6435203, p=1.35×10−9), LPP (rs4686953, p=3.35×10−8), ETS1 (rs3809006, p=7.74×10−9), DLEU1 (rs806349, p=8.14×10−12), LPIN3 (rs6072343, p=7.16×10−12) and IFNGR2 (rs9808753, p=4.40×10−10). Cis expression quantitative locus effects were observed in silico for rs6435203 on CD28 and for rs9808753 on several immunologically relevant genes in the IFNGR2 locus. Conclusions: This study adds seven loci to the list of genuine MS genetic risk factors and further extends the list of established loci shared across autoimmune diseases

    Spectrum of HSPG2 (perlecan) mutations in patients with Schwartz-Jampel syndrome

    No full text
    Schwartz-Jampel syndrome (SJS) is a rare autosomal recessive condition defined by the association of myotonia with chondrodysplasia. SJS results from mutations in the HSPG2 gene, which encodes perlecan, a major component of basement membranes. Only eight HSPG2 mutations have been reported in six SJS families. Here, we describe the molecular findings in 23 families (35 patients) with SJS, being one-third of the SJS cases reported in the medical literature. We identified 22 new HSPG2 mutations and unreported polymorphisms. Mutations included nine deletion or insertion (41%), six splice site (27%), five missense (23%), and two nonsense mutations (9%). All but four mutations were private, and we found no evidence for a founder effect. Analyses of HSPG2 messenger RNA (mRNA) and perlecan immunostaining on patients' cells revealed a hypomorphic effect of the studied mutations. They also demonstrated distinct consequences of truncating and missense mutations on perlecan expression as truncating mutations resulted in instability of HSPG2 mRNA through nonsense mRNA mediated decay, whereas missense mutations involving cysteine residues led to intracellular retention of perlecan, probably due to quality control pathways. Our analyses strengthen the idea that SJS results from hypomorphic mutations of the HSPG2 gene. They also propose tools for its molecular diagnosis and provide new clues for the understanding of its pathophysiology

    C9ORF72 repeat expansions in the frontotemporal dementias spectrum of diseases: a flow-chart for genetic testing.

    No full text
    International audienceFrontotemporal dementia (FTD) refers to a disease spectrum including the behavioral variant FTD (bvFTD), primary progressive aphasia (PPA), progressive supranuclear palsy/corticobasal degeneration syndrome (PSP/CBDS), and FTD with amyotrophic lateral sclerosis (FTD-ALS). A GGGGCC expansion in C9ORF72 is a major cause of FTD and ALS. C9ORF72 was analyzed in 833 bvFTD, FTD-ALS, PPA, and PSP/CBDS probands; 202 patients from 151 families carried an expansion. C9ORF72 expansions were much more frequent in the large subgroup of patients with familial FTD-ALS (65.9%) than in those with pure FTD (12.8%); they were even more frequent than in familial pure ALS, according to estimated frequencies in the literature (23-50%). The frequency of carriers in non-familial FTD-ALS (12.7%) indicates that C9ORF72 should be analyzed even when family history is negative. Mutations were detected in 6.8% of PPA patients, and in 3.2% of patients with a clinical phenotype of PSP, thus enlarging the phenotype spectrum of C9ORF72. Onset was later in C9ORF72 (57.4 years, 95%CI: 55.9-56.1) than in MAPT patients (46.8, 95%CI: 43.0-50.6; p = 0.00001) and the same as in PGRN patients (59.6 years; 95%CI: 57.6-61.7; p = 0.4). ALS was more frequent in C9ORF72 than in MAPT and PGRN patients; onset before age 50 and parkinsonism were indicative of MAPT mutations, whereas hallucinations were indicative of PGRN mutations; prioritization of genetic testing is thus possible. Penetrance was age- and gender-dependent: by age 50, 78% of male carriers were symptomatic, but only 52% of females. This can also guide genetic testing and counseling. A flowchart for genetic testing is thus proposed

    Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk

    No full text
    Multiple sclerosis is a complex neurological disease, with ∼20% of risk heritability attributable to common genetic variants, including >230 identified by genome-wide association studies. Multiple strands of evidence suggest that much of the remaining heritability is also due to additive effects of common variants rather than epistasis between these variants or mutations exclusive to individual families. Here, we show in 68,379 cases and controls that up to 5% of this heritability is explained by low-frequency variation in gene coding sequence. We identify four novel genes driving MS risk independently of common-variant signals, highlighting key pathogenic roles for regulatory T cell homeostasis and regulation, IFNγ biology, and NFκB signaling. As low-frequency variants do not show substantial linkage disequilibrium with other variants, and as coding variants are more interpretable and experimentally tractable than non-coding variation, our discoveries constitute a rich resource for dissecting the pathobiology of MS

    Erratum: Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk (Cell (2019) 178(1) (262), (S0092867419306798), (10.1016/j.cell.2019.06.016))

    No full text
    (Cell 175, 1679–1687.e1–e7; November 29, 2018) It has come to our attention that in preparing the final version of this article, the authors inadvertently misspelled the last name of author Charlotte E. Teunissen as “Charlotte E. Theunissen.” This error has been corrected in the article online. In the Editorial Note (Cell 178, 262, June 27, 2019), the editors refer to the original version of the published manuscript. That version contained a misspelled name, and as that has now been corrected, we are updating the Editorial Note as well

    Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients

    No full text
    Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here we describe the characterization of a multi-incident MS family which nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients and 886 controls from Canada identified ten additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports co-segregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients and 8797 controls from Canada, France, Spain, Germany, Belgium and Austria failed to identify significant association with disease (p=0.117), despite an overall higher prevalence in patients (OR=1.32; 95% CI=0.93-1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility.status: publishe

    Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients.

    Get PDF
    Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93-1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility
    corecore