563 research outputs found

    Moving the California distributed CMS xcache from bare metal into containers using Kubernetes

    Get PDF
    The University of California system has excellent networking between all of its campuses as well as a number of other Universities in CA, including Caltech, most of them being connected at 100 Gbps. UCSD and Caltech have thus joined their disk systems into a single logical xcache system, with worker nodes from both sites accessing data from disks at either site. This setup has been in place for a couple years now and has shown to work very well. Coherently managing nodes at multiple physical locations has however not been trivial, and we have been looking for ways to improve operations. With the Pacific Research Platform (PRP) now providing a Kubernetes resource pool spanning resources in the science DMZs of all the UC campuses, we have recently migrated the xcache services from being hosted bare-metal into containers. This paper presents our experience in both migrating to and operating in the new environment

    Moving the California distributed CMS XCache from bare metal into containers using Kubernetes

    Get PDF
    The University of California system maintains excellent networking between its campuses and a number of other Universities in California, including Caltech, most of them being connected at 100 Gbps. UCSD and Caltech Tier2 centers have joined their disk systems into a single logical caching system, with worker nodes from both sites accessing data from disks at either site. This successful setup has been in place for the last two years. However, coherently managing nodes at multiple physical locations is not trivial and requires an update on the operations model used. The Pacific Research Platform (PRP) provides Kubernetes resource pool spanning resources in the science demilitarized zones (DMZs) in several campuses in California and worldwide. We show how we migrated the XCache services from bare-metal deployments into containers using the PRP cluster. This paper presents the reasoning behind our hardware decisions and the experience in migrating to and operating in a mixed environment

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV