922 research outputs found

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Reduced P300 amplitude during retrieval on a spatial working memory task in a community sample of adolescents who report psychotic symptoms.

    Get PDF
    BACKGROUND: Deficits in working memory are widely reported in schizophrenia and are considered a trait marker for the disorder. Event-related potentials (ERPs) and imaging data suggest that these differences in working memory performance may be due to aberrant functioning in the prefrontal and parietal cortices. Research suggests that many of the same risk factors for schizophrenia are shared with individuals from the general population who report psychotic symptoms. METHODS: Forty-two participants (age range 11--13 years) were divided into those who reported psychotic symptoms (N = 17) and those who reported no psychotic symptoms, i.e. the control group (N = 25). Behavioural differences in accuracy and reaction time were explored between the groups as well as electrophysiological correlates of working memory using a Spatial Working Memory Task, which was a variant of the Sternberg paradigm. Specifically, differences in the P300 component were explored across load level (low load and high load), location (positive probe i.e. in the same location as shown in the study stimulus and negative probe i.e. in a different location to the study stimulus) and between groups for the overall P300 timeframe. The effect of load was also explored at early and late timeframes of the P300 component (250-430 ms and 430-750 ms respectively). RESULTS: No between-group differences in the behavioural data were observed. Reduced amplitude of the P300 component was observed in the psychotic symptoms group relative to the control group at posterior electrode sites. Amplitude of the P300 component was reduced at high load for the late P300 timeframe at electrode sites Pz and POz. CONCLUSIONS: These results identify neural correlates of neurocognitive dysfunction associated with population level psychotic symptoms and provide insights into ERP abnormalities associated with the extended psychosis phenotype

    Ralstonia syzygii, the Blood Disease Bacterium and Some Asian R. solanacearum Strains Form a Single Genomic Species Despite Divergent Lifestyles

    Get PDF
    The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer

    Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training

    Get PDF
    Recent behavioral studies report correlational evidence to suggest that non-musicians with good pitch discrimination sing more accurately than those with poorer auditory skills. However, other studies have reported a dissociation between perceptual and vocal production skills. In order to elucidate the relationship between auditory discrimination skills and vocal accuracy, we administered an auditory-discrimination training paradigm to a group of non-musicians to determine whether training-enhanced auditory discrimination would specifically result in improved vocal accuracy.We utilized micromelodies (i.e., melodies with seven different interval scales, each smaller than a semitone) as the main stimuli for auditory discrimination training and testing, and we used single-note and melodic singing tasks to assess vocal accuracy in two groups of non-musicians (experimental and control). To determine if any training-induced improvements in vocal accuracy would be accompanied by related modulations in cortical activity during singing, the experimental group of non-musicians also performed the singing tasks while undergoing functional magnetic resonance imaging (fMRI). Following training, the experimental group exhibited significant enhancements in micromelody discrimination compared to controls. However, we did not observe a correlated improvement in vocal accuracy during single-note or melodic singing, nor did we detect any training-induced changes in activity within brain regions associated with singing.Given the observations from our auditory training regimen, we therefore conclude that perceptual discrimination training alone is not sufficient to improve vocal accuracy in non-musicians, supporting the suggested dissociation between auditory perception and vocal production

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV