873 research outputs found

    Diagnosis and treatment of paraneoplastic neurological disorders

    Get PDF
    In about two thirds of cases, patients with paraneoplastic neurological disorders present to the neurologist without a known tumor. Due to the ongoing immune response, this tumor tends to stay biologically relatively benign, and therefore difficult to diagnose. In patients with a known tumor, the neurological symptoms often precede a tumor recurrence. In both scenarios, anti-neuronal antibodies are an invaluable diagnostic help to the clinician, and may be supplemented by other diagnostic tests such as MRI, CSF, and electrophysiology. Tumor therapy remains the mainstay of therapeutic options, although early immune therapy must be started in parallel. It is hoped that the recent fundamental advances in understanding the autoimmune pathology of these disorders, especially the role of cytotoxic T cells, will eventually lead to more effective treatment options

    Adsorption geometry and electronic structure of iron phthalocyanine on Ag surfaces: A LEED and photoelectron momentum mapping study

    Full text link
    We present a comprehensive study of the adsorption behavior of iron phthalocyanine on the low-index crystal faces of silver. By combining measurements of the reciprocal space by means of photoelectron momentum mapping and low energy electron diffraction, the real space adsorption geometries are reconstructed. At monolayer coverage ordered superstructures exist on all studied surfaces containing one molecule in the unit cell in case of Ag(100) and Ag(111), and two molecules per unit cell for Ag(110). The azimuthal tilt angle of the molecules against the high symmetry directions of the substrate is derived from the photoelectron momentum maps. A comparative analysis of the momentum patterns on the substrates with different symmetry indicates that both constituents of the twofold degenerate FePc lowest unoccupied molecular orbital are occupied by charge transfer from the substrate at the interface

    A Predicted Correlation Between Age Gradient and Star Formation History in FIRE Dwarf Galaxies

    Get PDF
    We explore the radial variation of star formation histories in dwarf galaxies simulated with Feedback In Realistic Environments (FIRE) physics. The sample contains 9 low-mass field dwarfs with M_ star = 10^5 - 10^7 M_sun from previous FIRE results, and a new suite of 17 higher mass field dwarfs with M_star = 10^7 - 10^9 M_sun introduced here. We find that age gradients are common in our dwarfs, with older stars dominant at large radii. The strength of the gradient correlates with overall galaxy age such that earlier star formation produces a more pronounced gradient. The relation between formation time and strength of the gradient is driven by both mergers and star-formation feedback. Mergers can both steepen and flatten the age gradient depending on the timing of the merger and star formation history of the merging galaxy. In galaxies without significant mergers, early feedback pushes stars to the outskirts at early times. Interestingly, among galaxies without mergers, those with large dark matter cores have flatter age gradients because these galaxies have more late-time feedback. If real galaxies have age gradients as we predict, stellar population studies that rely on sampling a limited fraction of a galaxy can give a biased view of its global star formation history. We show that central fields can be biased young by a few Gyrs while outer fields are biased old. Fields positioned near the 2D half-light radius will provide the least biased measure of a dwarf galaxy's global star formation history.Comment: 13 pages, 8 figures. Submitted to MNRAS, comments welcom

    Is it possible to reconcile extragalactic IMF variations with a universal Milky Way IMF?

    Get PDF
    One of the most robust observations of the stellar initial mass function (IMF) is its near-universality in the Milky Way and neighbouring galaxies. But recent observations of early-type galaxies can be interpreted to imply a ‘bottom-heavy’ IMF, while others of ultrafaint dwarfs could imply a ‘top-heavy’ IMF. This would impose powerful constraints on star formation models. We explore what sort of ‘cloud-scale’ IMF models could possibly satisfy these constraints. We utilize simulated galaxies that reproduce (broadly) the observed galaxy properties, while they also provide the detailed star formation history and properties of each progenitor star-forming cloud. We then consider generic models where the characteristic mass of the IMF is some arbitrary power-law function of progenitor cloud properties, along with well-known literature IMF models which scale with Jeans mass, ‘turbulent Bonnor–Ebert mass’, temperature, the opacity limit, metallicity, or the ‘protostellar heating mass’. We show that no IMF models currently in the literature – nor any model where the turnover mass is an arbitrary power-law function of a combination of cloud temperature/density/size/metallicity/velocity dispersion/magnetic field – can reproduce the claimed IMF variation in ellipticals or dwarfs without severely violating observational constraints in the Milky Way. Specifically, they predict too much variation in the ‘extreme’ environments of the Galaxy compared to that observed. Either the IMF varies in a more complicated manner, or alternative interpretations of the extragalactic observations must be explored

    Diagnostic criteria for primary autoimmune cerebellar ataxia—guidelines from an international task force on immune-mediated cerebellar ataxias

    Get PDF
    Aside from well-characterized immune-mediated ataxias with a clear trigger and/or association with specific neuronal antibodies, a large number of idiopathic ataxias are suspected to be immune mediated but remain undiagnosed due to lack of diagnostic biomarkers. Primary autoimmune cerebellar ataxia (PACA) is the term used to describe this later group. An International Task Force comprising experts in the field of immune ataxias was commissioned by the Society for Research on the Cerebellum and Ataxias (SRCA) in order to devise diagnostic criteria aiming to improve the diagnosis of PACA. The proposed diagnostic criteria for PACA are based on clinical (mode of onset, pattern of cerebellar involvement, presence of other autoimmune diseases), imaging findings (MRI and if available MR spectroscopy showing preferential, but not exclusive involvement of vermis) and laboratory investigations (CSF pleocytosis and/or CSF-restricted IgG oligoclonal bands) parameters. The aim is to enable clinicians to consider PACA when encountering a patient with progressive ataxia and no other diagnosis given that such consideration might have important therapeutic implications

    Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local Group environment

    Get PDF
    We study star formation histories (SFHs) of 500\simeq500 dwarf galaxies (stellar mass M=105109MM_\ast = 10^5 - 10^9\,M_\odot) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (LG)-like environments, and true field (i.e. isolated) dwarf galaxies. We reproduce observed trends wherein higher-mass dwarfs quench later (if at all), regardless of environment. We also identify differences between the environments, both in terms of "satellite vs. central" and "LG vs. individual MWvs. isolated dwarf central." Around the individual MW-mass hosts, we recover the result expected from environmental quenching: central galaxies in the "near field" have more extended SFHs than their satellite counterparts, with the former more closely resemble isolated ("true field") dwarfs (though near-field centrals are still somewhat earlier forming). However, this difference is muted in the LG-like environments, where both near-field centrals and satellites have similar SFHs, which resemble satellites of single MW-mass hosts. This distinction is strongest for M=106107MM_\ast = 10^6 - 10^7\,M_\odot but exists at other masses. Our results suggest that the paired halo nature of the LG may regulate star formation in dwarf galaxies even beyond the virial radii of the MW and Andromeda. Caution is needed when comparing zoom-in simulations targeting isolated dwarf galaxies against observed dwarf galaxies in the LG.Comment: Main text: 11 pages, 8 figures; appendices: 4 pages, 4 figures. Submitted to MNRAS; comments welcom