10,608 research outputs found

    XMM-Newton unveils the type 2 nature of the BLRG 3C 445

    Full text link
    We present an observation of XMM-Newton that unambiguously reveals the ``Seyfert 2'' nature of the Broad Line Radio Galaxy 3C 445. For the first time the soft excess of this source has been resolved. It consists of unobscured scattered continuum flux and emission lines, likely produced in a warm photoionized gas near the pole of an obscuring torus. The presence of circumnuclear (likely stratified) matter is supported by the complex obscuration of the nuclear region. Seventy percent of the nuclear radiation (first component) is indeed obscured by a column density ~4*10^{23} cm^{-2}, and 30 % (second component) is filtered by ~7* 10^{22} cm^{-2}. The first component is nuclear radiation directly observed by transmission through the thicker regions. The second one is of more uncertain nature. If the observer has a deep view into the nucleus but near the edge of the torus, it could be light scattered by the inner wall of the torus and/or by photoionized gas within the Broad Line Region observed through the thinner rim of the circumnuclear matter.Comment: MNRAS Letters, in pres

    The structure of Abell 1351: a bimodal galaxy cluster with peculiar diffuse radio emission

    Full text link
    We aim to review the internal structure and dynamics of the Abell 1351 cluster, shown to host a radio halo with a quite irregular shape. Our analysis is based on radial velocity data for 135 galaxies obtained at the Telescopio Nazionale Galileo. We combine galaxy velocities and positions to select 95 cluster galaxy members and analyse the internal dynamics of the whole cluster. We also examine X-ray data retrieved from Chandra and XMM archives. We measure the cluster redshift, =0.325, the line-of-sight (LOS) velocity dispersion, \sigma_v~1500 km/s, and the X-ray temperature, kT~9 keV. From both X-ray and optical data independently, we estimate a large cluster mass, in the 1--4 101510^{15} M‚äô_\odot range. We attribute the extremely high value of \sigma_v to the bimodality in the velocity distribution. We find evidence of a significant velocity gradient and optical 3D substructure. The X-ray analysis also shows many features in favour of a complex cluster structure, probably supporting an ongoing merger of substructures in Abell 1351. The observational scenario agrees with the presence of two main subclusters in the northern region, each with its brightest galaxy (BCG1 and BCG2), detected as the two most important X-ray substructures with a rest-frame LOS velocity difference of \Delta v~2500 km/s (in the rest frame) and probably being in large part aligned with the LOS. We conclude that Abell 1351 is a massive merging cluster. The details of the cluster structure allow us to interpret the quite asymmetric radio halo as a `normal' halo plus a southern relic, strongly supporting a previous suggestion based only on inspection of radio and preliminary X-ray data.Comment: 13 pages, 13 figures, 1 tabl

    Topological properties of the bond-modulated honeycomb lattice

    Get PDF
    We study the combined effects of lattice deformation, e-e interaction and spin-orbit coupling in a two-dimensional (2D) honeycomb lattice. We adopt different kinds of hopping modulation--generalized dimerization and a Kekule distortion--and calculate topological invariants for the non-interacting system and for the interacting system. We identify the parameter range (Hubbard U, hopping modulation, spin-orbit coupling) where the 2D system behaves as a trivial insulator or Quantum Spin Hall Insulator.Comment: 8 pages, 4 figures: discussion improved, typos corrected, references updated. Matches version published in PR

    Smart technologies: useful tools to assess the exposure to solar ultraviolet radiation for general population and outdoor workers

    Get PDF
    Beside some documented benefits attributed to ultraviolet solar radiation (solar UVR), a lot of adverse effects are a consequence of a chronic exposure, including the occurrence of photo-induced skin cancer. Improvement in risks perception, due to UVR overexposure, in the case of occupational or recreational exposure, is of great importance for public health. The amount of exposure to UVR has to be assessed as accurately as possible, with the aim to characterize different exposure conditions and, by their appropriate management, to prevent adverse health effects attributed to prolonged exposure to solar radiation (SR). The available technology allows to acquire such information, either using miniaturized and wearable sensors, or through devices who exploit radiative transfer models by integrating satellite-based radiometric data with meteorological data. We proceeded to an intercomparison to evaluate the performance of different devices in three commonly exposure conditions. Applications using satellite data, developed for preventing sunburn during recreational exposure, are adeguate for that purpose, while for a more accurate exposure assessment, only those which evaluate the irradiance in near real-time provide acceptable results. Unlike earlier, the low-cost devices that use wearable sensors showed inadequate performance for our purpose

    Topological invariants in interacting Quantum Spin Hall: a Cluster Perturbation Theory approach

    Get PDF
    Using Cluster Perturbation Theory we calculate Green's functions, quasi-particle energies and topological invariants for interacting electrons on a 2-D honeycomb lattice, with intrinsic spin-orbit coupling and on-site e-e interaction. This allows to define the parameter range (Hubbard U vs spin-orbit coupling) where the 2D system behaves as a trivial insulator or Quantum Spin Hall insulator. This behavior is confirmed by the existence of gapless quasi-particle states in honeycomb ribbons. We have discussed the importance of the cluster symmetry and the effects of the lack of full translation symmetry typical of CPT and of most Quantum Cluster approaches. Comments on the limits of applicability of the method are also provided.Comment: 7 pages, 7 figures: discussion improved, one figure added, references updated. Matches version published in New J. Phy

    Where does the gas fueling star formation in BCGs originate?

    Get PDF
    We investigate the relationship between X-ray cooling and star formation in brightest cluster galaxies (BCGs). We present an X-ray spectral analysis of the inner regions, 10-40 kpc, of six nearby cool core clusters (z<0.35) observed with Chandra ACIS. This sample is selected on the basis of the high star formation rate (SFR) observed in the BCGs. We restrict our search for cooling gas to regions that are roughly cospatial with the starburst. We fit single- and multi-temperature mkcflow models to constrain the amount of isobarically cooling intracluster medium (ICM). We find that in all clusters, below a threshold temperature ranging between 0.9 and 3 keV, only upper limits can be obtained. In four out of six objects, the upper limits are significantly below the SFR and in two, namely A1835 and A1068, they are less than a tenth of the SFR. Our results suggests that a number of mechanisms conspire to hide the cooling signature in our spectra. In a few systems the lack of a cooling signature may be attributed to a relatively long delay time between the X-ray cooling and the star burst. However, for A1835 and A1068, where the X-ray cooling time is shorter than the timescale of the starburst, a possible explanation is that the region where gas cools out of the X-ray phase extends to very large radii, likely beyond the core of these systems.Comment: to appear in A&

    3C 33: another case of photoionized soft X-ray emission in radio galaxies

    Full text link
    All the observations available in the Chandra and XMM-Newton archives have been used to investigate the X-ray spectral properties of 3C 33. In this paper is presented a complete X-ray analysis of the nuclear emission of this narrow line radio galaxy. The broad band spectrum of 3C 33 is complex. The hard part resembles that of Seyfert 2 galaxies, with a heavily obscured nuclear continuum (N_H~10^23 cm^-2) and a prominent Fe Kalpha line. This represents the nuclear radiation directly observed in transmission through a cold circumnuclear gas. On the other hand an unabsorbed continuum plus emission lines seem to fit well the soft part of the spectrum (0.5-2 keV) suggesting that the jet does not significantly contribute to the X-ray emission. We discuss the possible collisional or photoionized origin of the gas that emits the soft X-ray lines. Our results, strengthened by optical spectroscopy favor the photoionization scenario.Comment: 7 pages, 5 figures, accepted for publication in A&
    • ‚Ķ
    corecore