33 research outputs found

    Sense of smell in chronic rhinosinusitis: A multicentric study on 811 patients

    Get PDF
    Introduction: The impairment of the sense of smell is often related to chronic rhinosinusitis (CRS) with or without nasal polyps (CRSwNP, CRSsNP). CRSwNP is a frequent condition that drastically worsens the quality of life of those affected; it has a higher prevalence than CRSsNP. CRSwNP patients experience severe loss of smell with earlier presentation and are more likely to experience recurrence of their symptoms, often requiring revision surgery. Methods: The present study performed a multicentric data collection, enrolling 811 patients with CRS divided according to the inflammatory endotype (Type 2 and non-Type 2). All patients were referred for nasal endoscopy for the assessment of nasal polyposis using nasal polyp score (NPS); Sniffin' Sticks olfactory test were performed to measure olfactory function, and SNOT-22 (22-item sinonasal outcome test) questionnaire was used to assess patients' quality of life; allergic status was evaluated with skin prick test and nasal cytology completed the evaluation when available. Results: Data showed that Type 2 inflammation is more common than non-type 2 (656 patients versus 155) and patients suffer from worse quality of life and nasal polyp score. Moreover, 86.1% of patients with Type 2 CRSwNP were affected by a dysfunction of the sense of smell while it involved a lesser percentage of non-Type 2 patients. Indeed, these data give us new information about type-2 inflammation patients' characteristics. Discussion: The present study confirms that olfactory function weights on patients' QoL and it represents an important therapeutic goal that can also improve patients' compliance when achieved. In a future - and present - perspective of rhinological precision medicine, an impairment of the sense of smell could help the clinician to characterize patients better and to choose the best treatment available

    Measurement of the D+D^+- Meson Production Cross Section at Low Transverse Momentum in ppˉp\bar{p} Collisions at s=1.96\sqrt{s}=1.96 TeV

    No full text
    International audienceWe report on a measurement of the D+-meson production cross section as a function of transverse momentum (pT) in proton-antiproton (pp¯) collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10  fb-1 of integrated luminosity. We use D+→K-π+π+ decays fully reconstructed in the central rapidity region |y|<1 with transverse momentum down to 1.5  GeV/c, a range previously unexplored in pp¯ collisions. Inelastic pp¯-scattering events are selected online using minimally biasing requirements followed by an optimized offline selection. The K-π+π+ mass distribution is used to identify the D+ signal, and the D+ transverse impact-parameter distribution is used to separate prompt production, occurring directly in the hard-scattering process, from secondary production from b-hadron decays. We obtain a prompt D+ signal of 2950 candidates corresponding to a total cross section σ(D+,1.5<pT<14.5  GeV/c,|y|<1)=71.9±6.8(stat)±9.3(syst)  μb. While the measured cross sections are consistent with theoretical estimates in each pT bin, the shape of the observed pT spectrum is softer than the expectation from quantum chromodynamics. The results are unique in pp¯ collisions and can improve the shape and uncertainties of future predictions
    corecore