2 research outputs found

    An efficient reconfigurable workload balancing scheme for fog computing network using internet of things devices

    Get PDF
    Nowadays a huge amount of data has been communicated using fog nodes spread throughout smarty cities. the communication process is performed using fog nodes which are co-located with cellular base stations (BSs) that can move the computing resources close to internet of things (IoT) devices. In smart cities, a different type of data flow has been communicated through IoT devices. The communication process performs efficiently using the remote cloud. The IoT devices very close to the BS can communicate data without using fog nodes. Due to these phenomena, workload unbalancing occurs in IoT devices communicating in fog computing networks. Hence, it generates communication and computing latency. The task distribution process between the IoT devices is unbalanced. Hence, congestion and loss of information occur in fog computing network. A proposed reconfigurable load balancing algorithm (RLBA) is efficiently balancing the workload by reconfigurable communication channels and deviates the task with respect to the BS locations, IoT devices density and load IoT devices in each fog nodes in a network to minimize the communication and computing latency. As per the performance analysis, the proposed algorithm shows better performance as compared to conventional methods’ average latency ratio, communication latency ratio, computing load and traffic load

    An efficient adaptive reconfigurable routing protocol for optimized data packet distribution in network on chips

    Get PDF
    The deadlock-free and live lock-free routing at the same time is minimized in the network on chip (NoC) using the proposed adoptive reconfigurable routing protocol (ARRP). Congestion condition emergencies are avoided using the proposed algorithm. The input packet distribution process is improved among all its shortest paths of output points. The performance analysis has been initiated by considering different configuration (N*N) mesh networks, by sending various ranges of data packets to the network on chip. The average and maximum power dissipation of XY, odd-even, Dy-XY algorithm, and proposed algorithm are determined. In this paper, an analysis of gate utilization during data packet transfer in various mesh configurations is carried out. The number of cycles required for each message injection in different mesh configurations is analyzed. The proposed routing algorithm is implemented and compared with conventional algorithms. The simulation has been carried out using reconfigurable two-dimensional mesh for the NoC. The proposed algorithm has been implemented considering array size, the routing operating frequency, link width length, value of probability, and traffic types. The proposed ARRP algorithm reduces the average latency, avoids routing congestion, and is more feasible for NoC compared to conventional methods