24 research outputs found

    A Microbiome-Based Index for Assessing Skin Health and Treatment Effects for Atopic Dermatitis in Children.

    Get PDF
    A quantitative and objective indicator for skin health via the microbiome is of great interest for personalized skin care, but differences among skin sites and across human populations can make this goal challenging. A three-city (two Chinese and one American) comparison of skin microbiota from atopic dermatitis (AD) and healthy pediatric cohorts revealed that, although city has the greatest effect size (the skin microbiome can predict the originated city with near 100% accuracy), a microbial index of skin health (MiSH) based on 25 bacterial genera can diagnose AD with 83 to ‚ąľ95% accuracy within each city and 86.4% accuracy across cities (area under the concentration-time curve [AUC],‚ÄČ0.90). Moreover, nonlesional skin sites across the bodies of AD-active children (which include shank, arm, popliteal fossa, elbow, antecubital fossa, knee, neck, and axilla) harbor a distinct but lesional state-like microbiome that features relative enrichment of Staphylococcus aureus over healthy individuals, confirming the extension of microbiome dysbiosis across body surface in AD patients. Intriguingly, pretreatment MiSH classifies children with identical AD clinical symptoms into two host types with distinct microbial diversity and treatment effects of corticosteroid therapy. These findings suggest that MiSH has the potential to diagnose AD, assess risk-prone state of skin, and predict treatment response in children across human populations.IMPORTANCE MiSH, which is based on the skin microbiome, can quantitatively assess pediatric skin health across cohorts from distinct countries over large geographic distances. Moreover, the index can identify a risk-prone skin state and compare treatment effect in children, suggesting applications in diagnosis and patient stratification

    A microbiome-based index for assessing skin health and treatment effects for atopic dermatitis in children

    Get PDF
    A quantitative and objective indicator for skin health via the microbiome is of great interest for personalized skin care, but differences among skin sites and across human populations can make this goal challenging. A three-city (two Chinese and one American) comparison of skin microbiota from atopic dermatitis (AD) and healthy pediatric cohorts revealed that, although city has the greatest effect size (the skin microbiome can predict the originated city with near 100% accuracy), a microbial index of skin health (MiSH) based on 25 bacterial genera can diagnose AD with 83 to similar to 95% accuracy within each city and 86.4% accuracy across cities (area under the concentration-time curve [AUC], 0.90). Moreover, nonlesional skin sites across the bodies of AD-active children (which include shank, arm, popliteal fossa, elbow, antecubital fossa, knee, neck, and axilla) harbor a distinct but lesional state-like microbiome that features relative enrichment of Staphylococcus aureus over healthy individuals, confirming the extension of microbiome dysbiosis across body surface in AD patients. Intriguingly, pretreatment MiSH classifies children with identical AD clinical symptoms into two host types with distinct microbial diversity and treatment effects of corticosteroid therapy. These findings suggest that MiSH has the potential to diagnose AD, assess risk-prone state of skin, and predict treatment response in children across human populations. IMPORTANCE MiSH, which is based on the skin microbiome, can quantitatively assess pediatric skin health across cohorts from distinct countries over large geographic distances. Moreover, the index can identify a risk-prone skin state and compare treatment effect in children, suggesting applications in diagnosis and patient stratification

    Meta-QC-Chain: Comprehensive and Fast Quality Control Method for Metagenomic Data

    Get PDF
    Next-generation sequencing (NGS) technology has revolutionized and significantly impacted metagenomic research. However, the NGS data usually contains sequencing artifacts such as low-quality reads and contaminating reads, which will significantly compromise downstream analysis. Many quality control (QC) tools have been proposed, however, few of them have been verified to be suitable or efficient for metagenomic data, which are composed of multiple genomes and are more complex than other kinds of NGS data. Here we present a metagenomic data QC method named Meta-QC-Chain. Meta-QC-Chain combines multiple QC functions: technical tests describe input data status and identify potential errors, quality trimming filters poor sequencing-quality bases and reads, and contamination screening identifies higher eukaryotic species, which are considered as contamination for metagenomic data. Most computing processes are optimized based on parallel programming. Testing on an 8-GB real dataset showed that Meta-QC-Chain trimmed low sequencing-quality reads and contaminating reads, and the whole quality control procedure was completed within 20 min. Therefore, Meta-QC-Chain provides a comprehensive, useful and high-performance QC tool for metagenomic data. Meta-QC-Chain is publicly available for free at: http://computationalbioenergy.org/meta-qc-chain.html

    Method development for cross-study microbiome data mining: Challenges and opportunities

    No full text
    During the past decade, tremendous amount of microbiome sequencing data has been generated to study on the dynamic associations between microbial profiles and environments. How to precisely and efficiently decipher large-scale of microbiome data and furtherly take advantages from it has become one of the most essential bottlenecks for microbiome research at present. In this mini-review, we focus on the three key steps of analyzing cross-study microbiome datasets, including microbiome profiling, data integrating and data mining. By introducing the current bioinformatics approaches and discussing their limitations, we prospect the opportunities in development of computational methods for the three steps, and propose the promising solutions to multi-omics data analysis for comprehensive understanding and rapid investigation of microbiome from different angles, which could potentially promote the data-driven research by providing a broader view of the ‚Äúmicrobiome data space‚ÄĚ

    Forecasting hand-foot-and-mouth disease cases using wavelet-based SARIMA-NNAR hybrid model.

    No full text
    BackgroundHand-foot-and-mouth disease_(HFMD) is one of the most typical diseases in children that is associated with high morbidity. Reliable forecasting is crucial for prevention and control. Recently, hybrid models have become popular, and wavelet analysis has been widely performed. Better prediction accuracy may be achieved using wavelet-based hybrid models. Thus, our aim is to forecast number of HFMD cases with wavelet-based hybrid models.Materials and methodsWe fitted a wavelet-based seasonal autoregressive integrated moving average (SARIMA)-neural network nonlinear autoregressive (NNAR) hybrid model with HFMD weekly cases from 2009 to 2016 in Zhengzhou, China. Additionally, a single SARIMA model, simplex NNAR model, and pure SARIMA-NNAR hybrid model were established for comparison and estimation.ResultsThe wavelet-based SARIMA-NNAR hybrid model demonstrates excellent performance whether in fitting or forecasting compared with other models. Its fitted and forecasting time series are similar to the actual observed time series.ConclusionsThe wavelet-based SARIMA-NNAR hybrid model fitted in this study is suitable for forecasting the number of HFMD cases. Hence, it will facilitate the prevention and control of HFMD

    RNA-QC-chain: comprehensive and fast quality control for RNA-Seq data

    No full text
    Abstract Background RNA-Seq has become one of the most widely used applications based on next-generation sequencing technology. However, raw RNA-Seq data may have quality issues, which can significantly distort analytical results and lead to erroneous conclusions. Therefore, the raw data must be subjected to vigorous quality control (QC) procedures before downstream analysis. Currently, an accurate and complete QC of RNA-Seq data requires of a suite of different QC tools used consecutively, which is inefficient in terms of usability, running time, file usage, and interpretability of the results. Results We developed a comprehensive, fast and easy-to-use QC pipeline for RNA-Seq data, RNA-QC-Chain, which involves three steps: (1) sequencing-quality assessment and trimming; (2) internal (ribosomal RNAs) and external (reads from foreign species) contamination filtering; (3) alignment statistics reporting (such as read number, alignment coverage, sequencing depth and pair-end read mapping information). This package was developed based on our previously reported tool for general QC of next-generation sequencing (NGS) data called QC-Chain, with extensions specifically designed for RNA-Seq data. It has several features that are not available yet in other QC tools for RNA-Seq data, such as RNA sequence trimming, automatic rRNA detection and automatic contaminating species identification. The three QC steps can run either sequentially or independently, enabling RNA-QC-Chain as a comprehensive package with high flexibility and usability. Moreover, parallel computing and optimizations are embedded in most of the QC procedures, providing a superior efficiency. The performance of RNA-QC-Chain has been evaluated with different types of datasets, including an in-house sequencing data, a semi-simulated data, and two real datasets downloaded from public database. Comparisons of RNA-QC-Chain with other QC tools have manifested its superiorities in both function versatility and processing speed. Conclusions We present here a tool, RNA-QC-Chain, which can be used to comprehensively resolve the quality control processes of RNA-Seq data effectively and efficiently

    Meta-Apo improves accuracy of 16S-amplicon-based prediction of microbiome function

    No full text
    Background: Due to their much lower costs in experiment and computation than metagenomic whole-genome sequencing (WGS), 16S rRNA gene amplicons have been widely used for predicting the functional profiles of microbiome, via software tools such as PICRUSt 2. However, due to the potential PCR bias and gene profile variation among phylogenetically related genomes, functional profiles predicted from 16S amplicons may deviate from WGS-derived ones, resulting in misleading results. Results: Here we present Meta-Apo, which greatly reduces or even eliminates such deviation, thus deduces much more consistent diversity patterns between the two approaches. Tests of Meta-Apo on \u3e 5000 16S-rRNA amplicon human microbiome samples from 4 body sites showed the deviation between the two strategies is significantly reduced by using only 15 WGS-amplicon training sample pairs. Moreover, Meta-Apo enables cross-platform functional comparison between WGS and amplicon samples, thus greatly improve 16S-based microbiome diagnosis, e.g. accuracy of gingivitis diagnosis via 16S-derived functional profiles was elevated from 65 to 95% by WGS-based classification. Therefore, with the low cost of 16S-amplicon sequencing, Meta-Apo can produce a reliable, high-resolution view of microbiome function equivalent to that offered by shotgun WGS. Conclusions: This suggests that large-scale, function-oriented microbiome sequencing projects can probably benefit from the lower cost of 16S-amplicon strategy, without sacrificing the precision in functional reconstruction that otherwise requires WGS. An optimized C++ implementation of Meta-Apo is available on GitHub (https://github.com/qibebt-bioinfo/meta-apo) under a GNU GPL license. It takes the functional profiles of a few paired WGS:16S-amplicon samples as training, and outputs the calibrated functional profiles for the much larger number of 16S-amplicon samples

    Dynamic Meta-Storms enables comprehensive taxonomic and phylogenetic comparison of shotgun metagenomes at the species level

    No full text
    Motivation: An accurate and reliable distance (or dissimilarity) among shotgun metagenomes is fundamental to deducing the beta-diversity of microbiomes. To compute the distance at the species level, current methods either ignore the evolutionary relationship among species or fail to account for unclassified organisms that cannot be mapped to definite tip nodes in the phylogenic tree, thus can produce erroneous beta-diversity pattern. Results: To solve these problems, we propose the Dynamic Meta-Storms (DMS) algorithm to enable the comprehensive comparison of metagenomes on the species level with both taxonomy and phylogeny profiles. It compares the identified species of metagenomes with phylogeny, and then dynamically places the unclassified species to the virtual nodes of the phylogeny tree via their higher-level taxonomy information. Its high speed and low memory consumption enable pairwise comparison of 100 000 metagenomes (synthesized from 3688 bacteria) within 6.4 h on a single computing node
    corecore