48 research outputs found

    Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    Get PDF
    Usage of secondary cosmic muons to image the geological structures density distribution significantly developed during the past ten years. Recent applications demonstrate the method interest to monitor magma ascent and volcanic gas movements inside volcanoes. Muon radiography could be used to monitor density variations in aquifers and the critical zone in the near surface. However, the time resolution achievable by muon radiography monitoring remains poorly studied. It is biased by fluctuation sources exterior to the target, and statistically affected by the limited number of particles detected during the experiment. The present study documents these two issues within a simple and well constrained experimental context: a water tower. We use the data to discuss the influence of atmospheric variability that perturbs the signal, and propose correction formulas to extract the muon flux variations related to the water level changes. Statistical developments establish the feasibility domain of muon radiography monitoring as a function of target thickness (i.e. opacity). Objects with a thickness comprised between ≃\simeq 50 ±\pm 30m water equivalent correspond to the best time resolution. Thinner objects have a degraded time resolution that strongly depends on the zenith angle, whereas thicker objects (like volcanoes) time resolution does not.Comment: 11 pages, 9 figures. Final version published in Scientific Reports, Nature, 14 march 201

    Superoxide dismutase 2 (SOD2) contributes to genetic stability of native and T315I-mutated BCR-ABL expressing leukemic cells

    No full text
    International audienceManganese Superoxide dismutase 2 (SOD2) plays a crucial role in antioxidant defense but there are no data suggesting its role in genetic instability in CML. We evaluated the effects of SOD2 silencing in human UT7 cell line expressing either non-mutated or T315I-mutated BCR-ABL. Array-CGH experiments detected in BCR-ABL-expressing cells silenced for SOD2 a major genetic instability within several chromosomal loci, especially in regions carrying the glypican family (duplicated) and β-defensin genes (deleted). In a large cohort of patients with chronic myeloid leukemia (CML), a significant decrease of SOD2 mRNA was observed. This reduction appeared inversely correlated with leukocytosis and Sokal score, high-risk patients showing lower SOD2 levels. The analysis of anti-oxidant gene expression analysis revealed a specific down-regulation of the expression of PRDX2 in UT7-BCR-ABL and UT7-T315I cells silenced for SOD2 expression. Gene set enrichment analysis performed between the two SOD2-dependent classes of CML patients revealed a significant enrichment of Reactive Oxygen Species (ROS) Pathway. Our data provide the first evidence for a link between SOD2 expression and genetic instability in CML. Consequently, SOD2 mRNA levels should be analyzed in prospective studies as patients with low SOD2 expression could be more prone to develop a mutator phenotype under TKI therapies

    Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease

    No full text
    Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4 -/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.status: publishe
    corecore