274 research outputs found

    Influence of nanosecond laser surface patterning on dental 3Y-TZP: Effects on the topography, hydrothermal degradation and cell response

    Get PDF
    Objectives Laser surface micropatterning of dental-grade zirconia (3Y-TZP) was explored with the objective of providing defined linear patterns capable of guiding bone-cell response. Methods A nanosecond (ns-) laser was employed to fabricate microgrooves on the surface of 3Y-TZP discs, yielding three different groove periodicities (i.e., 30, 50 and 100 ¬Ķm). The resulting topography and surface damage were characterized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). X-Ray diffraction (XRD) and Raman spectroscopy techniques were employed to assess the hydrothermal degradation resistance of the modified topographies. Preliminary biological studies were conducted to evaluate adhesion (6 h) of human mesenchymal stem cells (hMSC) to the patterns in terms of cell number and morphology. Finally, Staphylococcus aureus adhesion (4 h) to the microgrooves was investigated. Results The surface analysis showed grooves of approximately 1.8 ¬Ķm height that exhibited surface damage in the form of pile-up at the edge of the microgrooves, microcracks and cavities. Accelerated aging tests revealed a slight decrease of the hydrothermal degradation resistance after laser patterning, and the Raman mapping showed the presence of monoclinic phase heterogeneously distributed along the patterned surfaces. An increase of the hMSC area was identified on all the microgrooved surfaces, although only the 50 ¬Ķm periodicity, which is closer to the cell size, significantly favored cell elongation and alignment along the grooves. A decrease in Staphylococcus aureus adhesion was observed on the investigated micropatterns. Significance The study suggests that linear microgrooves of 50 ¬Ķm periodicity may help in promoting hMSC adhesion and alignment, while reducing bacterial cell attachment.Peer ReviewedPostprint (published version

    Functionalization of 3D-printed titanium scaffolds with elastin-like recombinamers to improve cell colonization and osteoinduction

    Get PDF
    The 3D printing of titanium (Ti) offers countless possibilities for the development of personalized implants with suitable mechanical properties for different medical applications. However, the poor bioactivity of Ti is still a challenge that needs to be addressed to promote scaffold osseointegration. The aim of the present study was to functionalize Ti scaffolds with genetically modified elastin-like recombinamers (ELRs), synthetic polymeric proteins containing the elastin epitopes responsible for their mechanical properties and for promoting mesenchymal stem cell (MSC) recruitment, proliferation, and differentiation to ultimately increase scaffold osseointegration. To this end, ELRs containing specific cell-adhesive (RGD) and/or osteoinductive (SNA15) moieties were covalently attached to Ti scaffolds. Cell adhesion, proliferation, and colonization were enhanced on those scaffolds functionalized with RGD-ELR, while differentiation was promoted on those with SNA15-ELR. The combination of both RGD and SNA15 into the same ELR stimulated cell adhesion, proliferation, and differentiation, although at lower levels than those for every single moiety. These results suggest that biofunctionalization with SNA15-ELRs could modulate the cellular response to improve the osseointegration of Ti implants. Further investigation on the amount and distribution of RGD and SNA15 moieties in ELRs could improve cell adhesion, proliferation, and differentiation compared to the present study.Peer ReviewedPostprint (published version

    Guiding fibroblast activation using an RGD-mutated heparin binding II fragment of fibronectin for gingival titanium integration

    Get PDF
    The formation of a biological seal around the neck of titanium (Ti) implants is critical for ensuring integration at the gingival site and for preventing bacterialcolonization that may lead to periimplantitis. This process is guided byactivated fibroblasts, named myofibroblasts, which secrete extracellularmatrix (ECM) proteins and ECM-degrading enzymes resolving the wound.However, in some cases, Ti is not able to attract and activate fibroblasts to asufficient extent, which may compromise the success of the implant.Fibronectin (FN) is an ECM component found in wounds that is able to guidesoft tissue healing through the adhesion of cells and attraction of growthfactors (GFs). However, clinical use of FN functionalized Ti implants isproblematic because FN is difficult to obtain, and is sensitive to degradation.Herein, functionalizing Ti with a modified recombinant heparin binding II(HBII) domain of FN, mutated to include an Arg-Gly-Asp (RGD) sequence forpromoting both fibroblast adhesion and GF attraction, is aimed at. TheHBII-RGD domain is able to stimulate fibroblast adhesion, spreading,proliferation, migration, and activation to a greater extent than the nativeHBII, reaching values closer to those of full-length FN suggesting that itmight induce the formation of a biological sealing.Peer ReviewedPostprint (published version

    Titanium Boston keratoprosthesis with corneal cell adhesive and bactericidal dual coating

    Get PDF
    The Boston keratoprosthesis (BKPro) is a medical device used to restore vision in complicated cases of corneal blindness. This device is composed by a front plate of polymethylmethacrylate (PMMA) and a backplate usually made of titanium (Ti). Ti is an excellent biomaterial with numerous applications, although there are not many studies that address its interaction with ocular cells. In this regard, despite the good retention rates of the BKPro, two main complications compromise patients' vision and the viability of the prosthesis: imperfect adhesion of the corneal tissue to the upside of the backplate and infections. Thus, in this work, two topographies (smooth and rough) were generated on Ti samples and tested with or without functionalization with a dual peptide platform. This molecule consists of a branched structure that links two peptide moieties to address the main complications associated with BKPro: the well-known RGD peptide in its cyclic version (cRGD) as cell pro-adherent motif and the first 11 residues of lactoferrin (LF1‚Äď11) as antibacterial motif. Samples were physicochemically characterized, and their biological response was evaluated in vitro with human corneal keratocytes (HCKs) and against the gram-negative bacterial strain Pseudomonas aeruginosa. The physicochemical characterization allowed to verify the functionalization in a qualitative and quantitative manner. A higher amount of peptide was anchored to the rough surfaces. The studies performed using HCKs showed increased long-term proliferation on the functionalized samples. Gene expression was affected by topography and peptide functionalization. Roughness promoted a-smooth muscle actin (a-SMA) overexpression, and the coating notably increased the expression of extracellular matrix components (ECM). Such changes may favour the development of unwanted fibrosis, and thus, corneal haze. In contrast, the combination of the coating with a rough topography decreased the expression of a-SMA and ECM components, which would be desirable for the long-term success of the prosthesis. Regarding the antibacterial activity, the functionalized smooth and rough surfaces promoted the death of bacteria, as well as a perturbation in their wall definition and cellular morphology. Bacterial killing values were 58 % for smooth functionalised and 68 % for rough functionalised samples. In summary, this study suggests that the use of the dual peptide platform with cRGD and LF1-11 could be a good strategy to improve the in vitro and in vivo performance of the rough topography used in the commercial BKPro.Peer ReviewedPostprint (published version

    Dual-action effect of gallium and silver providing osseointegration and antibacterial properties to calcium titanate coatings on porous titanium implants

    Get PDF
    Previously, functional coatings on 3D-printed titanium implants were developed to improve their biointegration by separately incorporating Ga and Ag on the biomaterial surface. Now, a thermochemical treatment modification is proposed to study the effect of their simultaneous incorporation. Different concentrations of AgNO3 and Ga(NO3)3 are evaluated, and the obtained surfaces are completely characterized. Ion release, cytotoxicity, and bioactivity studies complement the characterization. The provided antibacterial effect of the surfaces is analyzed, and cell response is assessed by the study of SaOS-2 cell adhesion, proliferation, and differentiation. The Ti surface doping is confirmed by the formation of Ga-containing Ca titanates and nanoparticles of metallic Ag within the titanate coating. The surfaces generated with all combinations of AgNO3 and Ga(NO3)3 concentrations show bioactivity. The bacterial assay confirms a strong bactericidal impact achieved by the effect of both Ga and Ag present on the surface, especially for Pseudomonas aeruginosa, one of the main pathogens involved in orthopedic implant failures. SaOS-2 cells adhere and proliferate on the Ga/Ag-doped Ti surfaces, and the presence of gallium favors cell differentiation. The dual effect of both metallic agents doping the titanium surface provides bioactivity while protecting the biomaterial from the most frequent pathogens in implantology.Peer ReviewedPostprint (published version

    Influence of ECAP process on mechanical, corrosion and bacterial properties of Zn-2Ag alloy for wound closure devices

    Get PDF
    Actual polymeric wound closure devices are not optimal for load-bearing applications due to the low mechanical properties and the risk of inflammation and bacterial infection mainly produced by multifilament and braided configurations. Biodegradable metallic Zn alloys are promising materials candidates; however, mechanical performance, corrosion behaviour, and biological response should be controlled in order to inhibit the risk of inflammation and bacterial infection. To this end, a Zn-2Ag (2 wt% Ag) alloy was processed by ECAP to evaluate the concurrent combined effect of grain refinement and Ag alloying on biodegradation and antibacterial activity. Two ECAP cycles were successfully applied to a Zn-2Ag alloy obtaining a homogeneous ultra-fine-grained structure in which nanoindentation maps suggested isotropic mechanical properties. Lower UTS and YS with higher elongation was reported after ECAP with similar corrosion rates as before processing. ECAP processed samples showed a homogeneous Ag+ release below the minimum inhibitory concentration for S. Aureus and no antibacterial effect was observed by diffusion. As expected, the presence of Ag in Zn-Ag alloys reduced bacterial attachment. Nevertheless, ECAP processed Zn-2Ag provided an excellent antibacterial activity after 3 h probably caused by the uniformly degraded and thus, non‚Äď stable, surface observed after bacterial adhesion.Peer ReviewedPostprint (published version

    Surface competition between osteoblasts and bacteria on silver-doped bioactive titanium implant

    Get PDF
    The rapid integration in the bone tissue and the prevention of bacterial infection are key for the success of the implant. In this regard, a silver (Ag)-doped thermochemical treatment that generate an Ag-doped calcium titanate layer on titanium (Ti) implants was previously developed by our group to improve the bone-bonding ability and provide antibacterial activity. In the present study, the biological and antibacterial potential of this coating has been further studied. In order to prove that the Ag-doped layer has an antibacterial effect with no detrimental effect on the bone cells, the behavior of osteoblast-like cells in terms of cell adhesion, morphology, proliferation and differentiation was evaluated, and the biofilm inhibition capacity was assessed. Moreover, the competition by the surface between cell and bacteria was carried out in two different co-culture methods. Finally, the treatment was applied to porous Ti implants to study in vivo osteointegration. The results show that the incorporation of Ag inhibits the biofilm formation and has no effect on the performance of osteoblast-like cells. Therefore, it can be concluded that the Ag-doped surface is capable of preventing bone bacterial infection and providing suitable osseointegration.Postprint (published version

    Redefining biomaterial biocompatibility: challenges for artificial intelligence and text mining

    Get PDF
    The surge in ‚ÄėBig data‚Äô has significantly influenced biomaterials research and development, with vast data volumes emerging from clinical trials, scientific literature, electronic health records, and other sources. Biocompatibility is essential in developing safe medical devices and biomaterials to perform as intended without provoking adverse reactions. Therefore, establishing an artificial intelligence (AI)-driven biocompatibility definition has become decisive for automating data extraction and profiling safety effectiveness. This definition should both reflect the attributes related to biocompatibility and be compatible with computational data-mining methods. Here, we discuss the need for a comprehensive and contemporary definition of biocompatibility and the challenges in developing one. We also identify the key elements that comprise biocompatibility, and propose an integrated biocompatibility definition that enables data-mining approaches.Peer ReviewedPostprint (published version

    Comparison of the antibacterial effect of silver nanoparticles and a multifunctional antimicrobial peptide on titanium surface

    Get PDF
    Titanium implantation success may be compromised by Staphylococcus aureus surface colonization and posterior infection. To avoid this issue, different strategies have been investigated to promote an antibacterial character to titanium. In this work, two antibacterial agents (silver nanoparticles and a multifunctional antimicrobial peptide) were used to coat titanium surfaces. The modulation of the nanoparticle (ňú32.1 ¬Ī 9.4 nm) density on titanium could be optimized, and a sequential functionalization with both agents was achieved through a two-step functionalization method by means of surface silanization. The antibacterial character of the coating agents was assessed individually as well as combined. The results have shown that a reduction in bacteria after 4 h of incubation can be achieved on all the coated surfaces. After 24 h of incubation, however, the individual antimicrobial peptide coating was more effective than the silver nanoparticles or their combination against Staphylococcus aureus. All tested coatings were non-cytotoxic for eukaryotic cells.Peer ReviewedPostprint (author's final draft

    Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate

    No full text
    In the last decades, non-thermal plasma has been extensively investigated as a relevant tool for various biomedical applications, ranging from tissue decontamination to regeneration and from skin treatment to tumor therapies. This high versatility is due to the different kinds and amount of reactive oxygen and nitrogen species that can be generated during a plasma treatment and put in contact with the biological target. Some recent studies report that solutions of biopolymers with the ability to generate hydrogels, when treated with plasma, can enhance the generation of reactive species and influence their stability, resulting thus in the ideal media for indirect treatments of biological targets. The direct effects of the plasma treatment on the structure of biopolymers in water solution, as well as the chemical mechanisms responsible for the enhanced generation of RONS, are not yet fully understood. In this study, we aim at filling this gap by investigating, on the one hand, the nature and extent of the modifications induced by plasma treatment in alginate solutions, and, on the other hand, at using this information to explain the mechanisms responsible for the enhanced generation of reactive species as a consequence of the treatment. The approach we use is twofold: (i) investigating the effects of plasma treatment on alginate solutions, by size exclusion chromatography, rheology and scanning electron microscopy and (ii) study of a molecular model (glucuronate) sharing its chemical structure, by chromatography coupled with mass spectrometry and by molecular dynamics simulations. Our results point out the active role of the biopolymer chemistry during direct plasma treatment. Short-lived reactive species, such as OH radicals and O atoms, can modify the polymer structure, affecting its functional groups and causing partial fragmentation. Some of these chemical modifications, like the generation of organic peroxide, are likely responsible for the secondary generation of long-lived reactive species such as hydrogen peroxide and nitrite ions. This is relevant in view of using biocompatible hydrogels as vehicles for storage and delivery reactive species for targeted therapies.Peer ReviewedPostprint (author's final draft
    • ‚Ķ