6 research outputs found

    Failure Load and Fatigue Behavior of Monolithic Translucent Zirconia, PICN and Rapid-Layer Posterior Single Crowns on Zirconia Implants

    No full text
    This laboratory study aimed to evaluate the thermo-mechanical fatigue behavior and failure modes of monolithic and rapid-layer posterior single-crowns (SCs) supported by zirconia implants. Methods: 120 all-ceramic crowns supported by one-piece zirconia implants (ceramic.implant; vitaclinical) were divided into five groups (n = 24 each): Group Z-HT: 3Y-TZP monolithic-zirconia (Vita-YZ-HT); Group Z-ST: 4Y-TZP monolithic-zirconia (Vita-YZ-ST); Z-XT: 5Y-TZP monolithic-zirconia (Vita-YZ-XT); Group E: monolithic-polymer-infiltrated ceramic network (PICN,Vita-Enamic); Group RL (rapid layer): PICN-“table-top” (Vita-Enamic), 3Y-TZP-framework (Vita-YZ-HT). Half of the specimens of each group (n = 12) were exposed to fatigue with cyclic mechanical loading (F = 198N, 1.2-million cycles) and simultaneous thermocycling (5–55 °C). Single-load-to-failure testing (Z010, Zwick) was performed for all specimens without/with fatigue application. Data analysis was performed using ANOVA, Tukey’s post-hoc test, two-sample t-test and Bonferroni correction (p < 0.05). Results: All specimens survived fatigue exposure. Significant differences in failure loads were detected among groups (p ≤ 0.004). Materials Z-HT and Z-ST showed the highest failure loads followed by Z-XT, RL and E. The influence of fatigue was only significant for material RL. Conclusions: All types of tested materials exceeded clinically acceptable failure load values higher than 900N and can be recommended for clinical use. Z-HT and Z-ST appear to be highly reliable towards fatigue. Rapid-layer design of PICN and YZ-HT might be an interesting treatment concept for posterior implant SCs.Keywords: dental implant; zirconia; ceramics; translucent zirconia; fatigue; failure load; aging; chewing simulatio

    Mechanical Stability of Screw-Retained Monolithic and Bi-layer Posterior Hybrid Abutment Crowns after Thermomechanical Loading: An In Vitro Study

    No full text
    To evaluate the failure-load and survival-rate of screw-retained monolithic and bi-layered crowns bonded to titanium-bases before and after mouth-motion fatigue, 72 titanium-implants (SICvantage-max, SIC-invent-AG) were restored with three groups (n = 24) of screw-retained CAD/CAM implant-supported-single-crowns (ISSC) bonded to titanium-bases: porcelain-fused-to-metal (PFM-control), porcelain-fused-to-zirconia (PFZ-test) and monolithic LDS (LDS-test). Half of the specimens (n = 12/group) were subjected to fatigue in a chewing-simulator (1.2 million cycles, 198 N, 1.67 Hz, thermocycling 5&ndash;55 &deg;C). All samples were exposed to single-load-to-failure without (PFM0, PFZ0, LDS0) or with fatigue (PFM1, PFZ1, LDS1). Comparisons were statistically analyzed with t-tests and regression-models and corrected for multiple-testing using the Student&ndash;Neuman&ndash;Keuls method. All PFM and LDS crowns survived fatigue exposure, whereas 16.7% of PFZ showed chipping failures. The mean failure-loads (&plusmn;SD) were: PFM0: 2633 &plusmn; 389 N, PFM1: 2349 &plusmn; 578 N, PFZ0: 2152 &plusmn; 572 N, PFZ1: 1686 &plusmn; 691 N, LDS0: 2981 &plusmn; 798 N, LDS1: 2722 &plusmn; 497 N. Fatigue did not influence load to failure of any group. PFZ ISSC showed significantly lower failure-loads than monolithic-LDS regardless of artificial aging (p &lt; 0.05). PFM ISSC showed significantly higher failure loads after fatigue than PFZ (p = 0.032). All ISSC failed in a range above physiological chewing forces. Premature chipping fractures might occur in PFZ ISSC. Monolithic-LDS ISSC showed high reliability as an all-ceramic material for screw-retained posterior hybrid-abutment-crowns

    Reliability and Failure Mode of Ti-Base Abutments Supported by Narrow/Wide Implant Systems

    No full text
    To assess the reliability and failure modes of Ti-base abutments supported by narrow and wide-diameter implant systems. Narrow (Ø3.5 × 10 mm) and wide (Ø5 × 10 mm) implant systems of two different manufacturers with internal conical connections (16°) and their respective Ti-base abutments (3.5 and 4.5 mm) were evaluated. Ti-base abutments were torqued to the implants, standardized metallic maxillary incisor crowns were cemented, and step stress accelerated life testing of eighteen assemblies per group was performed in three loading profiles: mild, moderate, and aggressive until fracture or suspension. Reliability for missions of 100,000 cycles at 100 and 150 N was calculated, and fractographic analysis was performed. For missions at 100 N for 100,000 cycles, both narrow and wide implant systems exhibited a high probability of survival (≥99%, CI: 94–100%) without significant differences. At 150 N, wide-diameter implants presented higher reliability (≥99%, CI: 99–100%) compared to narrow implants (86%, CI: 61–95%), with no significant differences among manufacturers. Failure mode predominantly involved Ti-base abutment fractures at the abutment platform. Ti-base abutments supported by narrow and wide implant systems presented high reliability for physiologic masticatory forces, whereas for high load-bearing applications, wide-diameter implants presented increased reliability. Failures were confined to abutment fractures