15,924 research outputs found

    The geometry of sound rays in a wind

    Full text link
    We survey the close relationship between sound and light rays and geometry. In the case where the medium is at rest, the geometry is the classical geometry of Riemann. In the case where the medium is moving, the more general geometry known as Finsler geometry is needed. We develop these geometries ab initio, with examples, and in particular show how sound rays in a stratified atmosphere with a wind can be mapped to a problem of circles and straight lines.Comment: Popular review article to appear in Contemporary Physic

    Goryachev-Chaplygin, Kovalevskaya, and Brdi\v{c}ka-Eardley-Nappi-Witten pp-waves spacetimes with higher rank St\"ackel-Killing tensors

    Full text link
    Hidden symmetries of the Goryachev-Chaplygin and Kovalevskaya gyrostats spacetimes, as well as the Brdi\v{c}ka-Eardley-Nappi-Witten pp-waves are studied. We find out that these spacetimes possess higher rank St\"ackel-Killing tensors and that in the case of the pp-wave spacetimes the symmetry group of the St\"ackel-Killing tensors is the well-known Newton-Hooke group.Comment: 11 pages; accepted for publication in JM

    Localized Activation of Bending in Proximal, Medial and Distal Regions of Sea-Urchin Sperm Flagella

    Get PDF
    Spermatozoa from the sea urchin, Colobocentrotus atratus, were partially demembranated by extraction with solutions containing Triton X-100 at a concentration which was insufficient to solubilize the membranes completely. The resulting suspension was a mixture containing some spermatozoa in which a proximal, medial, or distal portion of the flagellum was membrane-covered, while the remaining portion was naked axoneme. In reactivating solutions containing 12 µM ATP, only the naked portions of the flagellum became motile. In reactivating solutions containing 0.8 mM ADP, the membrane-covered regions became motile and beat at 6-10 beats/s, while the naked regions remained immobile, or beat very slowly at about 0.3 beat/s. Activation of membrane-covered regions in ADP solutions probably results from the membrane restricting the diffusion of ATP which is formed from ADP by the axonemal adenylate kinase. The results indicate that any region of the flagellum has the capacity for autonomous beating, and that special properties of the basal end of the flagellum are not required for bend initiation. However, the beating of different regions of the flagellum is not completely independent, for in a fair number of spermatozoa the beating of the distal, membrane-covered region in 0.8 mM ADP was intermittent, and was turned on and off in phase with the much slower bending cycle in the proximal region of naked axoneme

    Flux-Confinement in Dilatonic Cosmic Strings

    Full text link
    We study dilaton-electrodynamics in flat spacetime and exhibit a set of global cosmic string like solutions in which the magnetic flux is confined. These solutions continue to exist for a small enough dilaton mass but cease to do so above a critcal value depending on the magnetic flux. There also exist domain wall and Dirac monopole solutions. We discuss a mechanism whereby magnetic monopolesmight have been confined by dilaton cosmic strings during an epoch in the early universe during which the dilaton was massless.Comment: 8 pages, DAMTP R93/3

    Bohm and Einstein-Sasaki Metrics, Black Holes and Cosmological Event Horizons

    Get PDF
    We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Einstein metrics on spheres and products of spheres of dimension 5 <= d <= 9. We prove that all the Bohm metrics on S^3 x S^2 and S^3 x S^3 have negative eigenvalue modes of the Lichnerowicz operator and by numerical methods we establish that Bohm metrics on S^5 have negative eigenvalues too. We argue that all the Bohm metrics will have negative modes. These results imply that higher-dimensional black-hole spacetimes where the Bohm metric replaces the usual round sphere metric are classically unstable. We also show that the stability criterion for Freund-Rubin solutions is the same as for black-hole stability, and hence such solutions using Bohm metrics will also be unstable. We consider possible endpoints of the instabilities, and show that all Einstein-Sasaki manifolds give stable solutions. We show how Wick rotation of Bohm metrics gives spacetimes that provide counterexamples to a strict form of the Cosmic Baldness conjecture, but they are still consistent with the intuition behind the cosmic No-Hair conjectures. We show how the Lorentzian metrics may be created ``from nothing'' in a no-boundary setting. We argue that Lorentzian Bohm metrics are unstable to decay to de Sitter spacetime. We also argue that noncompact versions of the Bohm metrics have infinitely many negative Lichernowicz modes, and we conjecture a general relation between Lichnerowicz eigenvalues and non-uniqueness of the Dirichlet problem for Einstein's equations.Comment: 53 pages, 11 figure

    Conformal Carroll groups

    Full text link
    Conformal extensions of Levy-Leblond's Carroll group, based on geometric properties analogous to those of Newton-Cartan space-time are proposed. The extensions are labelled by an integer kk. This framework includes and extends our recent study of the Bondi-Metzner-Sachs (BMS) and Newman-Unti (NU) groups. The relation to Conformal Galilei groups is clarified. Conformal Carroll symmetry is illustrated by "Carrollian photons". Motion both in the Newton-Cartan and Carroll spaces may be related to that of strings in the Bargmann space.Comment: 31 pages, no figures. Minor misprints corrected and clarifications added. To be published in J. Phys.
    • …