521 research outputs found

    New detection systems for an enhanced sensitivity in key stellar (n,ő≥) measurements

    No full text
    Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant and massive stars. However, neutron capture measurements via the time-of-flight (TOF) technique on key s-process nuclei are often challenging. Difficulties arise from the limited mass (‚ąľmg) available and the high sample-related background in the case of the unstable s-process branching points. Measurements on neutron magic nuclei, that act as s-process bottlenecks, are affected by low (n,ő≥) cross sections and a dominant neutron scattering background. Overcoming these experimental challenges requires the combination of facilities with high instantaneous flux, such as n_TOFEAR2, with detection systems with an enhanced detection sensitivity and high counting rate capabilities. This contribution reviews some of the latest detector developments in detection systems for (n,ő≥) measurements at n_TOF, such as i-TED, an innovative detection system which exploits the Compton imaging technique to reduce the dominant neutron scattering background and s-TED, a highly segmented total energy detector intended for high flux facilities. The discussion will be illustrated with results of the first measurement of key the s-process branching-point reaction 79Se(n,ő≥).Title in Web of Science: New detection systems for an enhanced sensitivity in key stellar (n,gamma) measurements</p

    Compton imaging for enhanced sensitivity (n,ő≥) cross section TOF experiments: Status and prospects

    No full text
    Radiative neutron-capture cross sections are of pivotal importance in many fields such as nucle-osynthesis studies or innovative reactor technologies. A large number of isotopes have been measured with high accuracy, but there are still a large number of relevant isotopes whose cross sections could not be experimentally determined yet, at least with sufficient accuracy and completeness, owing to limitations in detection techniques, sample production methods or in the facilities themselves. In the context of the HYMNS (High-sensitivitY Measurements of key stellar Nucleo-Synthesis reactions) project over the last six years we have developed a novel detection technique aimed at background suppression in radiative neutron-capture time-of-flight measurements. This new technique utilizes a complex detection set-up based on position-sensitive radiation-detectors deployed in a Compton-camera array configuration. The latter enables to implement gamma-ray imaging techniques, which help to disentangle true capture events arising from the sample under study and contaminant background events from the surroundings. A summary on the main developments is given in this contribution together with an update on recent experiments at CERN n_TOF and an outlook on future steps

    Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF

    Get PDF
    This article presents a few selected developments and future ideas related to the measurement of (n,ő≥) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with ő≥-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area

    Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF

    Get PDF
    This article presents a few selected developments and future ideas related to the measurement of (n,ő≥) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with ő≥-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area

    Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments

    Full text link
    One of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN n\_TOF facility, the detectors of choice are the C6_{6}D6_{6} liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN n\_TOF 20~m fligth path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from 197^{197}Au(nn,ő≥\gamma), including the saturated 4.9~eV resonance which is an important component of normalization for neutron cross section measurements

    A segmented total energy detector (sTED) for (n, ő≥) cross section measurements at n_TOF EAR2

    No full text
    The neutron time-of-flight facility n_TOF is characterised by its high instantaneous neutron intensity, high-resolution and broad neutron energy spectra, specially conceived for neutron-induced reaction cross section measurements. Two Time-Of-Flight (TOF) experimental areas are available at the facility: experimental area 1 (EAR1), located at the end of the 185 m horizontal flight path from the spallation target, and experimental area 2 (EAR2), placed at 20 m from the target in the vertical direction. The neutron fluence in EAR2 is ňú 300 times more intense than in EAR1 in the relevant time-of-flight window. EAR2 was designed to carry out challenging cross-section measurements with low mass samples (approximately 1 mg), reactions with small cross-sections or/and highly radioactive samples. The high instantaneous fluence of EAR2 results in high counting rates that challenge the existing capture systems. Therefore, the sTED detector has been designed to mitigate these effects. In 2021, a dedicated campaign was done validating the performance of the detector up to at least 300 keV neutron energy. After this campaign, the detector has been used to perform various capture cross section measurements at n_TOF EAR2

    Characterisation of the n_TOF 20 m beam line at CERN with the new spallation target

    No full text
    The n_TOF facility hosts CERN’s pulsed neutron source, comprising two beam lines of different flight paths and one activation station. It is based on a proton beam delivered by the PS accelerator impinging on a lead spallation target. During Long Shutdown 2 (LS2) at CERN (2019-2021), a major upgrade of the spallation target was carried out in order to optimize the performances of the neutron beam. Therefore, the characteristics of n_TOF two experimental areas were investigated in detail. In this work, the focus is on the second experimental area (EAR2), located 20 m above the spallation target. Preliminary results of the neutron energy distribution and beam line energy resolution are presented, compared to previous experimental campaigns and Monte Carlo simulations with the FLUKA code. Moreover, preliminary results of the spatial beam profile measurements are shown

    Overview of the dissemination of n_TOF experimental data and resonance parameters

    No full text
    The n_TOF neutron time-of-flight facility at CERN is used for nuclear data measurements. The n_TOF Collaboration works closely with the Nuclear Reaction Data Centres (NRDC) network to disseminate the experimental data through the international EXFOR library. In addition, the Collaboration helps integrate the results in the evaluated library projects. The present contribution describes the dissemination status of n_TOF results, their impact on evaluated libraries and ongoing efforts to provide n_TOF resonance parameters in ENDF-6 format for further use by evaluation projects

    Neutron capture and total cross-section measurements on

    No full text
    Capture and total cross section measurements for 94,95,96Mo have been performed at the neutron time-of-flight facilities, n_TOF at CERN and GELINA at JRC-Geel. The measurements were performed using isotopically enriched samples with an enrichment above 95% for each of the 94,95,96Mo isotopes. The capture measurements were performed at n_TOF using C6D6 detectors and a new sTED detector. The transmission measurements were performed at a 10 m station of GELINA using a 6Li glass neutron detector. Preliminary results of these measurements are presented

    The neutron time-of-flight facility n_TOF at CERN Recent facility upgrades and detector developments

    No full text
    Based on an idea by Carlo Rubbia, the n_TOF facility at CERN has been operating for over 20 years. It is a neutron spallation source, driven by the 20 GeV/c proton beam from the CERN PS accelerator. Neutrons in a very wide energy range (from GeV, down to sub-eV kinetic energy) are generated by a massive Lead spallation target feeding two experimental areas. EAR1, horizonal with respect to the proton beam direction is set at 185 meters from the spallation target. EAR2, on the vertical line from the spallation source, is placed at 20 m. Neutron energies for experiments are selected by the time-of-flight technique (hence the name n_TOF), while the long flight paths ensure a very good energy resolution. Over one hundred experiments have been performed by the n_TOF Collaboration at CERN, with applications ranging from nuclear astrophysics (synthesis of the heavy elements in stars, big bang nucleosynthesis, nuclear cosmo-chronology), to advanced nuclear technologies (nuclear data for applications, nuclear safety), as well as for basic nuclear science (reaction mechanisms, structure and decay of highly excited compound states). During the planned shutdown of the CERN accelerator complex between 2019 and 2021, the facility went through a substantial upgrade with a new target-moderator assembly, refurbishing of the neutron beam lines and experimental areas. An additional measuring and irradiation station (the NEAR Station) has been envisaged and its capabilities for performing material test studies and new physics opportunities are presently explored. An overview of the facility and of the activities performed at CERN is presented in this contribution, with a particular emphasis on the most relevant experiments for nuclear astrophysics
    • ‚Ķ
    corecore