100 research outputs found

    Formation of ions and radicals from icy grains in comets

    Get PDF
    Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets

    Electron beam profile imaging in the presence of coherent optical radiation effects

    Full text link
    High-brightness electron beams with low energy spread at existing and future x-ray free-electron lasers are affected by various collective beam self-interactions and microbunching instabilities. The corresponding coherent optical radiation effects, e.g., coherent optical transition radiation, render electron beam profile imaging impossible and become a serious issue for all kinds of electron beam diagnostics using imaging screens. Furthermore, coherent optical radiation effects can also be related to intrinsically ultrashort electron bunches or the existence of ultrashort spikes inside the electron bunches. In this paper, we discuss methods to suppress coherent optical radiation effects both by electron beam profile imaging in dispersive beamlines and by using scintillation imaging screens in combination with separation techniques. The suppression of coherent optical emission in dispersive beamlines is shown by analytical calculations, numerical simulations, and measurements. Transverse and longitudinal electron beam profile measurements in the presence of coherent optical radiation effects in non-dispersive beamlines are demonstrated by applying a temporal separation technique.Comment: 12 pages, 11 figures, submitted to Phys. Rev. ST Accel. Beam

    Phase Diversity Electro-optic Sampling: A new approach to single-shot terahertz waveform recording

    Full text link
    THz spectroscopy is an emerging tool for detection of microorganisms and harmful compounds in the food industry, the study of proteins in biomedicine and the development of electron-beam X-ray sources for molecular imaging and lithography. Recording of THz electric field evolution in single-shot is crucially needed in terahertz spectroscopy of irreversible processes in such applications as well as for data communication in the THz portion of the spectrum where there is an abundance of untapped bandwidth. However, achieving sub-picosecond resolution over a long time window has been an open problem for electro-optic sampling -- the standard technique for recording terahertz waveforms. We introduce a new conceptual framework for this open problem that is inspired by time-stretch theory. The novel framework unveils a solution to this 20 year-old problem leading to a dramatic enhancement of the achievable temporal resolution. We validate this new technology in two applications. First, we present single shot recordings of long free-propagating terahertz transients with record time resolution. Second, we present recordings of ultra-short relativistic electron bunches at the European X-ray Free Electron Laser. These results show that electric signals may be now recorded with terahertz bandwidth over arbitrarily long windows, thus enabling the realization of "single-shot terahertz oscilloscopes" and single-shot time-domain spectroscopy systems with an arbitrary time-bandwidth product

    Ultra-fast detector for wide range spectral measurements

    Get PDF
    KALYPSO is a novel detector operating at line rates above 10 Mfps. The detector board holds a silicon or InGaAs linear array sensor with spectral sensitivity ranging from 400 nm to 2600 nm. The sensor is connected to a cutting-edge, custom designed, ASIC readout chip which is responsible for the remarkable frame rate. The FPGA readout architecture enables continuous data acquisition and processing in real time. This detector is currently employed in many synchrotron facilities for beam diagnostics and for the characterization of self-built Ytterbium-doped fiber laser emitting around 1050 nm with a bandwidth of 40 nm

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF
    • ‚Ķ
    corecore