25 research outputs found

    Production and secretion of functional SARS-CoV-2 spike protein in Chlamydomonas reinhardtii

    Get PDF
    The spike protein is the major protein on the surface of coronaviruses. It is therefore the prominent target of neutralizing antibodies and consequently the antigen of all currently admitted vaccines against SARS-CoV-2. Since it is a 1,273-amino acids glycoprotein with 22 N-linked glycans, the production of functional, full-length spike protein was limited to higher eukaryotes. Here we report the production of full-length SARS-CoV-2 spike protein – lacking the C-terminal membrane anchor – as a secreted protein in the prefusion-stabilized conformation in the unicellular green alga Chlamydomonas reinhardtii. We show that the spike protein is efficiently cleaved at the furin cleavage site during synthesis in the alga and that cleavage is abolished upon mutation of the multi-basic cleavage site. We could enrich the spike protein from culture medium by ammonium sulfate precipitation and demonstrate its functionality based on its interaction with recombinant ACE2 and ACE2 expressed on human 293T cells. Chlamydomonas reinhardtii is a GRAS organism that can be cultivated at low cost in simple media at a large scale, making it an attractive production platform for recombinant spike protein and other biopharmaceuticals in low-income countries

    Induction of tolerogenic lung CD4+ T cells by local treatment with a pSTAT-3 and pSTAT-5 inhibitor ameliorated experimental allergic asthma

    Get PDF
    Signal transducer and activator of transcription (STAT)-3 inhibitors play an important role in regulating immune responses. Galiellalactone (GL) is a fungal secondary metabolite known to interfere with the binding of phosphorylated signal transducer and activator of transcription (pSTAT)-3 as well of pSTAT-6 dimers to their target DNA in vitro. Intra nasal delivery of 50 μg GL into the lung of naive Balb/c mice induced FoxP3 expression locally and IL-10 production and IL-12p40 in RNA expression in the airways in vivo. In a murine model of allergic asthma, GL significantly suppressed the cardinal features of asthma, such as airway hyperresponsiveness, eosinophilia and mucus production, after sensitization and subsequent challenge with ovalbumin (OVA). These changes resulted in induction of IL-12p70 and IL-10 production by lung CD11c+ dendritic cells (DCs) accompanied by an increase of IL-3 receptor α chain and indoleamine-2,3-dioxygenase expression in these cells. Furthermore, GL inhibited IL-4 production in T-bet-deficient CD4+ T cells and down-regulated the suppressor of cytokine signaling-3 (SOCS-3), also in the absence of STAT-3 in T cells, in the lung in a murine model of asthma. In addition, we found reduced amounts of pSTAT-5 in the lung of GL-treated mice that correlated with decreased release of IL-2 by lung OVA-specific CD4+ T cells after treatment with GL in vitro also in the absence of T-bet. Thus, GL treatment in vivo and in vitro emerges as a novel therapeutic approach for allergic asthma by modulating lung DC phenotype and function resulting in a protective response via CD4+FoxP3+ regulatory T cells locall

    The macrocyclic lactone oxacyclododecindione reduces fibrosis progression

    Get PDF
    Background: Renal fibrosis is one of the most important triggers of chronic kidney disease (CKD), and only a very limited number of therapeutic options are available to stop fibrosis progression. As fibrosis is characterized by inflammation, myofibroblast activation, and extracellular matrix (ECM) deposition, a drug that can address all these processes might be an interesting therapeutic option.Methods: We tested in vivo in an ischemia–reperfusion (I/R) model in C57BL/6 mice and in kidney tubular epithelial cells (TEC) (HK2 cell line and primary cells) whether the natural product oxacyclododecindione (Oxa) reduces fibrosis progression in kidney disease. This was evaluated by Western blot, mRNA expression, and mass spectrometry secretome analyses, as well as by immunohistochemistry.Results: Indeed, Oxa blocked the expression of epithelial–mesenchymal transition marker proteins and reduced renal damage, immune cell infiltration, and collagen expression and deposition, both in vivo and in vitro. Remarkably, the beneficial effects of Oxa were also detected when the natural product was administered at a time point of established fibrotic changes, a situation close to the clinical situation. Initial in vitro experiments demonstrated that a synthetic Oxa derivative possesses similar features.Conclusion: Although open questions such as possible side effects need to be investigated, our results indicate that the combination of anti-inflammatory and anti-fibrotic effects of Oxa make the substance a promising candidate for a new therapeutic approach in fibrosis treatment, and thus in the prevention of kidney disease progression

    SF002-96-1, a new drimane sesquiterpene lactone from an Aspergillus species, inhibits survivin expression

    No full text
    Survivin, a member of the IAP (inhibitor of apoptosis) gene family, is overexpressed in virtually all human cancers and is functionally involved in the inhibition of apoptosis, regulation of cell proliferation, metastasis and resistance to therapy. Because of its upregulation in malignancy, survivin has currently attracting considerable interest as a new target for anticancer therapy. In a screening of approximately 200 strains of imperfect fungi for the production of inhibitors of survivin promoter activity, a new drimane sesquiterpene lactone, SF002-96-1, was isolated from fermentations of an Aspergillus species. The compound inhibited survivin promoter activity in transiently transfected Colo 320 cells in a dose dependent manner with IC(50) values of 3.42 µM (1.3 µg/mL). Moreover, it also reduced mRNA levels and protein synthesis of survivin and triggered apoptosis

    Ganodermycin, a novel inhibitor of cxcl10 expression from ganoderma applanatum

    No full text
    CXCL10 (inducible protein-10) is a highly inducible chemoattractant, which contributes to the recruitment of inflammatory cells, such as macrophages and T-lymphocytes, and thereby has important roles in chronic inflammatory conditions. In a search for new inhibitors of CXCL10 expression in MonoMac6 cells, a novel compound, designated as Ganodermycin, was isolated from fermentations of the basidiomycete Ganoderma applanatum. The structure was determined by a combination of spectroscopic techniques. Ganodermycin inhibited the lipopolysaccharide (LPS)/interferon (IFN)-gamma-induced CXCL10 promoter activity in transiently transfected MonoMac6 cells in a dose-dependent manner with IC(50) values of 15-20 mu g ml(-1) (53-71 mu M). Ganodermycin also reduced LPS/IFN-gamma-induced CXCL10 protein synthesis and excretion. The Journal of Antibiotics (2011) 64, 683-686; doi:10.1038/ja.2011.64; published online 27 July 201

    Production and secretion of functional SARS-CoV-2 spike protein in Chlamydomonas reinhardtii

    No full text
    The spike protein is the major protein on the surface of coronaviruses. It is therefore the prominent target of neutralizing antibodies and consequently the antigen of all currently admitted vaccines against SARS-CoV-2. Since it is a 1,273-amino acids glycoprotein with 22 N-linked glycans, the production of functional, full-length spike protein was limited to higher eukaryotes. Here we report the production of full-length SARS-CoV-2 spike protein – lacking the C-terminal membrane anchor – as a secreted protein in the prefusion-stabilized conformation in the unicellular green alga Chlamydomonas reinhardtii. We show that the spike protein is efficiently cleaved at the furin cleavage site during synthesis in the alga and that cleavage is abolished upon mutation of the multi-basic cleavage site. We could enrich the spike protein from culture medium by ammonium sulfate precipitation and demonstrate its functionality based on its interaction with recombinant ACE2 and ACE2 expressed on human 293T cells. Chlamydomonas reinhardtii is a GRAS organism that can be cultivated at low cost in simple media at a large scale, making it an attractive production platform for recombinant spike protein and other biopharmaceuticals in low-income countries

    Imidazo[1,2-a]pyridine derivatives as inhibitors of TNF-alpha expression in T cells

    No full text
    Novel hexahydroimidazo[1,2-a]pyridines prepared by the addition of ethyl (1-benzylimidazolidin-2-ylidene)acetate (2) to the fungal metabolite podoscyphic acid (1a) and esters of 1a have been evaluated for their ability to inhibit the inducible TNF-α promoter activity in T cells. The methyl ester 3b is the most potent, inhibiting the TNF-α driven reporter gene expression in Jurkat T cells with an IC50-value of 2.0 μg/ml (3.6 μM). In addition, compound 3b inhibited the inducible TNF-α production in the myelomonocytic U937 cells with an IC50-value of 4.6 μM

    Drug Candidates for Autoimmune Diseases

    No full text
    Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-ÎşB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs
    corecore