81 research outputs found

    Evolutionary appearance of von Economo's neurons in the mammalian cerebral cortex.

    Get PDF
    von Economo’s neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the “social brain.” VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain. However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the “global Workspace” architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication) between salience-related insular and cingulate and other widely separated brain areas. Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the functional magnetic resonance imaging data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental investigations

    A subcortical network for implicit visuo-spatial attention:Implications for Parkinson's disease

    Get PDF
    Recent studies in humans and animal models suggest a primary role of the basal ganglia in the extraction of stimulus-value regularities, then exploited to orient attentional shift and build up sensorimotor memories. The tail of the caudate and the posterior putamen both receive early visual input from the superficial layers of the superior colliculus, thus forming a closed-loop. We portend that the functional value of this circuit is to manage the selection of visual stimuli in a rapid and automatic way, once sensory-motor associations are formed and stored in the posterior striatum. In Parkinson's Disease, the nigrostriatal dopamine depletion starts and tends to be more pronounced in the posterior putamen. Thus, at least some aspect of the visuospatial attention deficits observed since the early stages of the disease could be the behavioral consequences of a cognitive system that has lost the ability to translate high-level processing in stable sensorimotor memories. (C) 2021 The Authors. Published by Elsevier Ltd
    • …