1,220 research outputs found

    Continuum limit of a mesoscopic model with elasticity of step motion on vicinal surfaces

    Full text link
    This work considers the rigorous derivation of continuum models of step motion starting from a mesoscopic Burton-Cabrera-Frank (BCF) type model following the work [Xiang, SIAM J. Appl. Math. 2002]. We prove that as the lattice parameter goes to zero, for a finite time interval, a modified discrete model converges to the strong solution of the limiting PDE with first order convergence rate.Comment: 52 page

    Stochastic Answer Networks for Machine Reading Comprehension

    Full text link
    We propose a simple yet robust stochastic answer network (SAN) that simulates multi-step reasoning in machine reading comprehension. Compared to previous work such as ReasoNet which used reinforcement learning to determine the number of steps, the unique feature is the use of a kind of stochastic prediction dropout on the answer module (final layer) of the neural network during the training. We show that this simple trick improves robustness and achieves results competitive to the state-of-the-art on the Stanford Question Answering Dataset (SQuAD), the Adversarial SQuAD, and the Microsoft MAchine Reading COmprehension Dataset (MS MARCO).Comment: 11 pages, 5 figures, Accepted to ACL 201

    Learning Semantic Representations for the Phrase Translation Model

    Get PDF
    This paper presents a novel semantic-based phrase translation model. A pair of source and target phrases are projected into continuous-valued vector representations in a low-dimensional latent semantic space, where their translation score is computed by the distance between the pair in this new space. The projection is performed by a multi-layer neural network whose weights are learned on parallel training data. The learning is aimed to directly optimize the quality of end-to-end machine translation results. Experimental evaluation has been performed on two Europarl translation tasks, English-French and German-English. The results show that the new semantic-based phrase translation model significantly improves the performance of a state-of-the-art phrase-based statistical machine translation sys-tem, leading to a gain of 0.7-1.0 BLEU points