26,641 research outputs found

    Discovery of a new supernova remnant G150.3+4.5

    Full text link
    Large-scale radio continuum surveys have good potential for discovering new Galactic supernova remnants (SNRs). Surveys of the Galactic plane are often limited in the Galactic latitude of |b| ~ 5 degree. SNRs at high latitudes, such as the Cygnus Loop or CTA~1, cannot be detected by surveys in such limited latitudes. Using the available Urumqi 6 cm Galactic plane survey data, together with the maps from the extended ongoing 6 cm medium latitude survey, we wish to discover new SNRs in a large sky area. We searched for shell-like structures and calculated radio spectra using the Urumqi 6 cm, Effelsberg 11 cm, and 21 cm survey data. Radio polarized emission and evidence in other wavelengths are also examined for the characteristics of SNRs. We discover an enclosed oval-shaped object G150.3+4.5 in the 6 cm survey map. It is about 2.5 degree wide and 3 degree high. Parts of the shell structures can be identified well in the 11 cm, 21 cm, and 73.5 cm observations. The Effelsberg 21 cm total intensity image resembles most of the structures of G150.3+4.5 seen at 6 cm, but the loop is not closed in the northwest. High resolution images at 21 cm and 73.5 cm from the Canadian Galactic Plane Survey confirm the extended emission from the eastern and western shells of G150.3+4.5. We calculated the radio continuum spectral indices of the eastern and western shells, which are β2.4\beta \sim -2.4 and β2.7\beta \sim -2.7 between 6 cm and 21 cm, respectively. The shell-like structures and their non-thermal nature strongly suggest that G150.3+4.5 is a shell-type SNR. For other objects in the field of view, G151.4+3.0 and G151.2+2.6, we confirm that the shell-like structure G151.4+3.0 very likely has a SNR origin, while the circular-shaped G151.2+2.6 is an HII region with a flat radio spectrum, associated with optical filamentary structure, Hα\alpha, and infrared emission.Comment: 5 pages, 3 figures, accepted for publication of Astronomy and Astrophysic
    corecore