10 research outputs found

    Recyclable poly(thiourethane) vitrimers with high Tg. Influence of the isocyanate structure

    Get PDF
    Networked poly(thiourethane) materials with Tgs around 130 °C, derived from two aliphatic isocyanates (isophorone diisocyanate, IPDI and 4,4'-methylene bis(cyclohexyl isocyanate), HMDI) and one aromatic diisocyanate (toluene-2,4-diisocyanate, TDI) have been prepared with the same trithiol as comonomer (trimethylol propane tris(3-mercaptopropionate), S3) in stoichiometric proportions in the presence of dibutyltin dilaurate (DBTDL) as the catalyst. The higher reactivity of TDI allowed the preparation of this material in absence of catalyst. The evolution of the curing process has been followed by FTIR. Thermomechanical studies have been performed to determine their viscoelastic properties and their vitrimeric behaviour. The materials were able to reach a complete relaxation stress state thanks to the exchange process of the thiourethane moiety. Among them, TDI derived material experimented the fastest relaxation. The materials were also characterized by thermogravimetry and tensile tests. The recycled materials obtained by grinding the original thermosets and hot-pressing the powder have been fully characterized by mechanical, thermomechanical and FTIR studies, which allowed to confirm their recyclability without appreciable changes in the network structure. The presence of DBTDL in the materials has been proved to be necessary to reach a good recyclability.Postprint (author's final draft

    Actuator behaviour of tailored poly(Thiourethane) shape memory thermosets

    Get PDF
    n this work, a new family of poly(thiourethane) shape memory thermosetting actuators was developed and characterized. These materials can be easily prepared from mixtures of two different aliphatic diisocyanates and a trithiol in the presence of a latent catalyst, allowing an easy manipulation of the formulation. Rheological studies of the curing process confirm the latent character of the formulations. The glass transition temperatures and the mechanical properties can be modified by varying the proportion of diisocyanates (hexamethylene diisocyanate, HDI, and isophorone diisocyanate, IPDI) with stoichiometric amounts of trimethylolpropane tris(3-mercaptopropionate). The shape-memory behavior was deeply investigated under three different conditions: unconstrained, partially constrained, and fully constrained. Tests were performed in single cantilever bending mode to simulate conditions closer to real complex mechanics of thermomechanical actuators under flexural performances. The complex recovery process in single cantilever bending mode was compared with that obtained using tensile mode. The results evidenced that the amount of recovery force in fully constrained conditions, or energy released during the recovery process in partially constrained, can be modulated by simply changing the proportion of both diisocyanates. A simple model based on Timoshenko beam theory was used for the prediction of the amount of work performed. The reported results are an important guideline to design shape-memory materials based on poly(thiourethane) networks, establishing criteria for the choice of the material depending on the expected applicationPeer ReviewedPostprint (author's final draft

    The use of lanthanide triflates in the preparation of poly(thiourethane) covalent adaptable networks

    Get PDF
    Covalent adaptable networks (CANs) are new polymeric materials with the mechanical properties of thermosets and the possibility of being recycled like thermoplastics. Poly(thiourethane) networks have demonstrated vitrimeric-like behavior at high temperatures due to the trans-thiocarbamoylation process, which Lewis acids and bases can accelerate. In this study, we report the use of lanthanide triflates (La, Sm, Dy, Er, and Yb) as Lewis acid catalysts, a greener alternative to other metallic catalysts as dibutyltin dilaurate (DBTDL) widely used in poly (urethane) and poly(thiourethane) networks. Moreover, they are not as reactive as DBTDL, and the curing mixture can be manipulated for a longer time at room temperature. As monomers, trimethylolpropane tris(3- mercapto propionate) (S3), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI) have been used. We have demonstrated that the materials prepared with lanthanum triflate present the lowest relaxation times than those prepared with other lanthanide triflates or DBTDL. Calorimetry (DSC) and infrared spectroscopy (FTIR) were applied to study the curing process. The materials obtained were fully characterized by thermog- ravimetric analysis (TGA) and thermomechanical tests (DMA).This work is part of the R&D projects PID2020-115102RB-C21 and PID2020-115102RB-C22 funded by MCNI/AEI/10.13039/ 501100011033. We acknowledge these grants and to the Generalitat de Catalunya (2021-SGR-00154 and BASE3D). F.G. thanks to MCNI/AEI for the grant PRE2018-084192.Postprint (published version

    New epoxy composite thermosets with enhanced thermal conductivity and high Tg obtained by cationic homopolymerization

    No full text
    Thermal dissipation is a critical aspect for the performance and lifetime of electronic devices. In this work, novel composites based on a cycloaliphatic epoxy matrix and BN fillers, obtained by cationic curing of mixtures of 3,4-epoxy cyclohexylmethyl 3,4-epoxy cyclohexane carboxylate (ECC) with several amounts of hexagonal boron nitride (BN) were prepared and characterized. As cationic initiator a commercial benzylanilinium salt was used, which by addition of triethanolamine, exhibited an excellent latent character and storage stability. The effect of the formulation composition was studied by calorimetry and rheological measurements. The variation of thermal conductivity, thermal stability, thermal expansion coefficient, and thermomechanical and mechanical properties of the composites with the load of BN filler (ranging from 10 to 40 wt%) was evaluated. An improvement of an 800% (1.04 W/m·K) in thermal conductivity was reached in materials with glass transition temperatures >200°C without any loss in electrical insulation

    Toward the recyclability of thermosetting polymers

    No full text
    Polymers, commonly known with the generic term “plastics,” are nowadays key materials in many industrial sectors and in our daily life. The word “polymer” is derived from the Greek words “polis” (many) and “meros” (part). Therefore, polymers are materials which consist of large molecules whose structure is made up of several smaller repeating units called monomers. They are used in a great number of applications and fields such as packaging, textile, automotive, building, aerospace or pharmacy. The broad applicability of these materials is due to their low cost and high performances, which arise from the combination of several properties, among others: easy processing, versatility, durability and high strength to weight ratio. The production of plastics has continuously increased over the last 60 years from the 1.7 million metric tons (Mt) produced in 1950 to 348 Mt in 2017 [1]. However, the mismatch between the increasing production rate and an adequate result in waste management has led to serious environmental problems [2, 3]. For this reason, in 2018, the European Commission communicated the “European Strategy for Plastics in a Circular Economy,” emphasizing the need for improved design and production of plastics to facilitate reuse, repair and recycling [4, 5]. From the data provided by Geyer et al. [6], approximately 6,000 Mt of plastic waste has been produced since 1950, and around 5,000 Mt of them has been discarded in landfills or in the natural environment, as it is shown in the following graphPeer ReviewedObjectius de Desenvolupament Sostenible::13 - Acció per al ClimaPostprint (published version