303,141 research outputs found

    Helicity Observation of Weak and Strong Fields

    Get PDF
    We report in this letter our analysis of a large sample of photospheric vector magnetic field measurements. Our sample consists of 17200 vector magnetograms obtained from January 1997 to August 2004 by Huairou Solar Observing Station of the Chinese National Astronomical Observatory. Two physical quantities, α\alpha and current helicity, are calculated and their signs and amplitudes are studied in a search for solar cycle variations. Different from other studies of the same type, we calculate these quantities for weak (100G1000G100G1000G) fields separately. For weak fields, we find that the signs of both α\alpha and current helicity are consistent with the established hemispheric rule during most years of the solar cycle and their magnitudes show a rough tendency of decreasing with the development of solar cycle. Analysis of strong fields gives an interesting result: Both α\alpha and current helicity present a sign opposite to that of weak fields. Implications of these observations on dynamo theory and helicity production are also briefly discussed.Comment: accepted for publication in ApJ Lette

    A zero dimensional model of lithium-sulfur batteries during charge and discharge

    Get PDF
    Lithium-sulfur cells present an attractive alternative to Li-ion batteries due to their large energy density, safety, and possible low cost. Their successful commercialisation is dependent on improving their performance, but also on acquiring sufficient understanding of the underlying mechanisms to allow for the development of predictive models for operational cells. To address the latter, we present a zero dimensional model that predicts many observed features in the behaviour of a lithium-sulfur cell during charge and discharge. The model accounts for two electrochemical reactions via the Nernst formulation, power limitations through Butler-Volmer kinetics, and precipitation/dissolution of one species, including nucleation. It is shown that the precipitation/dissolution causes the flat shape of the low voltage plateau, typical of the lithium-sulfur cell discharge. During charge, it is predicted that the dissolution can act as a bottleneck, as for large enough currents smaller amounts dissolve. This results in reduced charge capacity and an earlier onset of the high plateau reaction, such that the two plateaus merge. By including these effects, the model improves on the existing zero dimensional models, while requiring considerably fewer input parameters and computational resources. The model also predicts that, due to precipitation, the customary way of experimentally measuring the open circuit voltage from a low rate discharge might not be suitable for lithium-sulfur. This model can provide the basis for mechanistic studies, identification of dominant effects in a real cell, predictions of operational behaviour under realistic loads, and control algorithms for applications

    Hot spin spots in the laser-induced demagnetization

    Full text link
    Laser-induced femtosecond magnetism or femtomagnetism simultaneously relies on two distinctive contributions: (a) the optical dipole interaction (ODI) between a laser field and a magnetic system and (b) the spin expectation value change (SEC) between two transition states. Surprisingly, up to now, no study has taken both contributions into account simultaneously. Here we do so by introducing a new concept of the optical spin generator, a product of SEC and ODI between transition states. In ferromagnetic nickel, our first-principles calculation demonstrates that the larger the value of optical spin generator is, the larger the dynamic spin moment change is. This simple generator directly links the time-dependent spin moment change {\Delta}Mk z (t) at every crystal- momentum k point to its intrinsic electronic structure and magnetic properties. Those hot spin spots are a direct manifestation of the optical spin generator, and should be the focus of future research.Comment: 10 pages, 2 figures, [email protected]

    Multiple Lifshitz transitions driven by short-range antiferromagnetic correlations in the two-dimensional Kondo lattice model

    Full text link
    With a mean field approach, the heavy Fermi liquid in the two-dimensional Kondo lattice model is carefully considered in the presence of short-range antiferromagnetic correlations. As the ratio of the local Heisenberg superexchange coupling to the Kondo coupling increases, the Fermi surface structure changes dramatically. From the analysis of the ground state energy density, multiple Lifshitz type phase transitions occur at zero temperature.Comment: 4 pages, 3 figures, contribution to SCES201