8,899 research outputs found

    Numeric and fluid dynamic representation of tornadic double vortex thunderstorms

    Get PDF
    Current understanding of a double vortex thunderstorm involves a pair of contra-rotating vortices that exists in the dynamic updraft. The pair is believed to be a result of a blocking effect which occurs when a cylindrical thermal updraft of a thunderstorm protrudes into the upper level air and there is a large amount of vertical wind shear between the low level and upper level air layers. A numerical tornado prediction scheme based on the double vortex thunderstorm was developed. The Energy-Shear Index (ESI) is part of the scheme and is calculated from radiosonde measurements. The ESI incorporates parameters representative of thermal instability and blocking effect, and indicates appropriate environments for which the development of double vortex thunderstorms is likely

    Disappearance of Residual Dry Matter on Annual Grassland in the Absence of Grazing

    Get PDF
    Residual dry matter (RDM) is a standard used by grassland managers for assessing the level of grazing use on annual grasslands and associated savannas and woodlands. Residual dry matter is the old plant material left standing or on the ground at the beginning of a new growing season. It indicates the combined effects of the previous season\u27s forage production and its consumption by grazing animals of all types. The standard assumes that the amount of RDM remaining in the fall, subject to site conditions and variations in weather, will influence subsequent species composition and forage production, in addition to providing soil protection and protect against nutrient losses (Bartolome, et al., 2002). While RDM is measured at the beginning of a new growing season, grazing does not always occur continuously up to this time. Managers do not have information to predict the disappearance of residual dry matter due to physical and chemical breakdown during a period of non-grazing. In this study the rate of RDM disappearance during the summer (non-growing) period on annual grasslands was investigated

    Performance of AAOmega: the AAT multi-purpose fibre-fed spectrograph

    Full text link
    AAOmega is the new spectrograph for the 2dF fibre-positioning system on the Anglo-Australian Telescope. It is a bench-mounted, double-beamed design, using volume phase holographic (VPH) gratings and articulating cameras. It is fed by 392 fibres from either of the two 2dF field plates, or by the 512 fibre SPIRAL integral field unit (IFU) at Cassegrain focus. Wavelength coverage is 370 to 950nm and spectral resolution 1,000-8,000 in multi-Object mode, or 1,500-10,000 in IFU mode. Multi-object mode was commissioned in January 2006 and the IFU system will be commissioned in June 2006. The spectrograph is located off the telescope in a thermally isolated room and the 2dF fibres have been replaced by new 38m broadband fibres. Despite the increased fibre length, we have achieved a large increase in throughput by use of VPH gratings, more efficient coatings and new detectors - amounting to a factor of at least 2 in the red. The number of spectral resolution elements and the maximum resolution are both more than doubled, and the stability is an order of magnitude better. The spectrograph comprises: an f/3.15 Schmidt collimator, incorporating a dichroic beam-splitter; interchangeable VPH gratings; and articulating red and blue f/1.3 Schmidt cameras. Pupil size is 190mm, determined by the competing demands of cost, obstruction losses, and maximum resolution. A full suite of VPH gratings has been provided to cover resolutions 1,000 to 7,500, and up to 10,000 at particular wavelengths.Comment: 13 pages, 4 figures; presented at SPIE, Astronomical Telescopes and Instrumentation, 24 - 31 May 2006, Orlando, Florida US

    Design analysis of levitation facility for space processing applications

    Get PDF
    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand

    Nonlinear Dynamics of Composite Fermions in Nanostructures

    Full text link
    We outline a theory describing the quasi-classical dynamics of composite fermions in the fractional quantum Hall regime in the potentials of arbitrary nanostructures. By an appropriate parametrization of time we show that their trajectories are independent of their mass and dispersion. This allows to study the dynamics in terms of an effective Hamiltonian although the actual dispersion is as yet unknown. The applicability of the theory is verified in the case of antidot arrays where it explains details of magnetoresistance measurements and thus confirms the existence of these quasiparticles.Comment: submitted to Europhys. Lett., 4 pages, postscrip

    Ballistic Composite Fermions in Semiconductor Nanostructures

    Full text link
    We report the results of two fundamental transport measurements at a Landau level filling factor ν\nu of 1/2. The well known ballistic electron transport phenomena of quenching of the Hall effect in a mesoscopic cross-junction and negative magnetoresistance of a constriction are observed close to B~=~0 and ν = 1/2\nu~=~ 1/2. The experimental results demonstrate semi-classical charge transport by composite fermions, which consist of electrons bound to an even number of flux quanta.Comment: 9 pages TeX 3.1415 C version 6.1, 3 PostScript figure

    Phase-field approach to heterogeneous nucleation

    Full text link
    We consider the problem of heterogeneous nucleation and growth. The system is described by a phase field model in which the temperature is included through thermal noise. We show that this phase field approach is suitable to describe homogeneous as well as heterogeneous nucleation starting from several general hypotheses. Thus we can investigate the influence of grain boundaries, localized impurities, or any general kind of imperfections in a systematic way. We also put forward the applicability of our model to study other physical situations such as island formation, amorphous crystallization, or recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical Review

    Cranial morphometrics of the dire wolf, Canis dirus, at Rancho La Brea: temporal variability and its links to nutrient stress and climate

    Get PDF
    The tar pits of Rancho La Brea are a unique window onto the biology and ecology of the terminal Pleistocene in southern California. In this study we capitalize on recent advances in understanding of La Brea tar pit chronology to perform the first morphometric study of crania of the dire wolf, Canis dirus, over time. We first present new data on tooth fracture and wear from pits dated older than heretofore analyzed, and demonstrate that fracture and wear events, and the increased competition and heightened carcass utilization they are thought to represent, were of varying intensity across the sampled time intervals. Skull size, and by extension body size, is shown to differ significantly among pits at La Brea, with the strongest single observation being reduction in body size at the last glacial maximum. Skull size variation is shown to be a result of both ontogenetic and evolutionary factors, neither of which is congruent with a temporal version of Bergmann’s rule. Skull shape difference among the pits is also significant, with shape variability attributable to both neotenic effects in populations with high breakage and wear, and evolutionary changes possibly due to climate change. Testing of this hypothesis requires better accuracy and precision in La Brea carbon data, a program that is within the reach of current AMS dating technology
    • …
    corecore