7,236 research outputs found

### From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

### Exploring Pd adsorption, diffusion, permeation, and nucleation on bilayer SiO<sub>2</sub>/Ru as a function of hydroxylation and precursor environment: From UHV to catalyst preparation

The hydroxylation-dependent permeability of bilayer SiO2 supported on Ru(0001) was investigated by XPS and TDS studies in a temperature range of 100K to 600K. For this, the thermal behavior of Pd evaporated at 100K, which results in surface and sub-surface (Ru-supported) binding arrangements, was examined relative to the extent of pre-hydroxylation. Samples containing only defect-mediated hydroxyls showed no effect on Pd diffusion through the film at low temperature. If, instead, the concentration of strongly bound hydroxyl groups and associated weakly bound water molecules was enriched by an electron-assisted hydroxylation procedure, the probability for Pd diffusion through the film is decreased via a pore-blocking mechanism. Above room temperature, all samples showed similar behavior, reflective of particle nucleation above the film and eventual agglomeration with any metal atoms initially binding beneath the film. When depositing Pd onto the same SiO2/Ru model support via adsorption of [Pd(NH3)4]C2 from alkaline (pH12) precursor solution, we observe notably different adsorption and nucleation mechanisms. The resultant Pd adsorption complexes follow established decomposition pathways to produce model catalyst systems compatible with those created exclusively within UHV despite lacking the ability to penetrate the film due to the increased size of the initial Pd precursor groups

### From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

### Magnetism and d-wave superconductivity on the half-filled square lattice with frustration

The role of frustration and interaction strength on the half-filled Hubbard
model is studied on the square lattice with nearest and next-nearest neighbour
hoppings t and t' using the Variational Cluster Approximation (VCA). At
half-filling, we find two phases with long-range antiferromagnetic (AF) order:
the usual Neel phase, stable at small frustration t'/t, and the so-called
collinear (or super-antiferromagnet) phase with ordering wave-vector $(\pi,0)$
or $(0,\pi)$, stable for large frustration. These are separated by a phase with
no detectable long-range magnetic order. We also find the d-wave
superconducting (SC) phase ($d_{x^2-y^2}$), which is favoured by frustration if
it is not too large. Intriguingly, there is a broad region of coexistence where
both AF and SC order parameters have non-zero values. In addition, the physics
of the metal-insulator transition in the normal state is analyzed. The results
obtained with the help of the VCA method are compared with the large-U
expansion of the Hubbard model and known results for the frustrated J1-J2
Heisenberg model. These results are relevant for pressure studies of undoped
parents of the high-temperature superconductors: we predict that an insulator
to d-wave SC transition may appear under pressure.Comment: 12 pages, 10 figure

### Exotic Spaces in Quantum Gravity I: Euclidean Quantum Gravity in Seven Dimensions

It is well known that in four or more dimensions, there exist exotic
manifolds; manifolds that are homeomorphic but not diffeomorphic to each other.
More precisely, exotic manifolds are the same topological manifold but have
inequivalent differentiable structures. This situation is in contrast to the
uniqueness of the differentiable structure on topological manifolds in one, two
and three dimensions. As exotic manifolds are not diffeomorphic, one can argue
that quantum amplitudes for gravity formulated as functional integrals should
include a sum over not only physically distinct geometries and topologies but
also inequivalent differentiable structures. But can the inclusion of exotic
manifolds in such sums make a significant contribution to these quantum
amplitudes? This paper will demonstrate that it will. Simply connected exotic
Einstein manifolds with positive curvature exist in seven dimensions. Their
metrics are found numerically; they are shown to have volumes of the same order
of magnitude. Their contribution to the semiclassical evaluation of the
partition function for Euclidean quantum gravity in seven dimensions is
evaluated and found to be nontrivial. Consequently, inequivalent differentiable
structures should be included in the formulation of sums over histories for
quantum gravity.Comment: AmsTex, 23 pages 5 eps figures; replaced figures with ones which are
hopefully viewable in pdf forma

### Elucidating Surface Structure with Action Spectroscopy

Surface Action Spectroscopy, a vibrational spectroscopy method developed in recent years at the Fritz Haber Institute is employed for structure determination of clean and H2O-dosed (111) magnetite surfaces. Surface structural information is revealed by using the microscopic surface vibrations as a fingerprint of the surface structure. Such vibrations involve just the topmost atomic layers, and therefore the structural information is truly surface related. Our results strongly support the view that regular Fe3O4(111)/Pt(111) is terminated by the so-called Fetet1 termination, that the biphase termination of Fe3O4(111)/Pt(111) consists of FeO and Fe3O4(111) terminated areas, and we show that the method can differentiate between different water structures in H2O-derived adsorbate layers on Fe3O4(111)/Pt(111). With this, we conclude that the method is a capable new member in the set of techniques providing crucial information to elucidate surface structures. The method does not rely on translational symmetry and can therefore also be applied to systems which are not well ordered. Even an application to rough surfaces is possible

### Self-Interaction and Gauge Invariance

A simple unified closed form derivation of the non-linearities of the
Einstein, Yang-Mills and spinless (e.g., chiral) meson systems is given. For
the first two, the non-linearities are required by locality and consistency; in
all cases, they are determined by the conserved currents associated with the
initial (linear) gauge invariance of the first kind. Use of first-order
formalism leads uniformly to a simple cubic self-interaction.Comment: Missing last reference added. 9 pages, This article, the first paper
in Gen. Rel. Grav. [1 (1970) 9], is now somewhat inaccessible; the present
posting is the original version, with a few subsequent references included.
Updates update

### Nambu-Goldstone Modes in Gravitational Theories with Spontaneous Lorentz Breaking

Spontaneous breaking of Lorentz symmetry has been suggested as a possible
mechanism that might occur in the context of a fundamental Planck-scale theory,
such as string theory or a quantum theory of gravity. However, if Lorentz
symmetry is spontaneously broken, two sets of questions immediately arise: what
is the fate of the Nambu-Goldstone modes, and can a Higgs mechanism occur? A
brief summary of some recent work looking at these questions is presented here.Comment: 6 pages. Presented at the meeting "From Quantum to Cosmos,"
Washington, D.C., May 2006; published in Int. J. Mod. Phys. D16:2357-2363,
200

### Computing with cells: membrane systems - some complexity issues.

Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism

### Experimental analysis of lateral impact on planar brittle material

The fragmentation of alumina and glass plates due to lateral impact is
studied. A few hundred plates have been fragmented at different impact
velocities and the produced fragments are analyzed. The method employed in this
work allows one to investigate some geometrical properties of the fragments,
besides the traditional size distribution usually studied in former
experiments. We found that, although both materials exhibit qualitative similar
fragment size distribution function, their geometrical properties appear to be
quite different. A schematic model for two-dimensional fragmentation is also
presented and its predictions are compared to our experimental results. The
comparison suggests that the analysis of the fragments' geometrical properties
constitutes a more stringent test of the theoretical models' assumptions than
the size distribution

- …