53 research outputs found

    Rhythm and Randomness in Human Contact

    Full text link
    There is substantial interest in the effect of human mobility patterns on opportunistic communications. Inspired by recent work revisiting some of the early evidence for a L\'evy flight foraging strategy in animals, we analyse datasets on human contact from real world traces. By analysing the distribution of inter-contact times on different time scales and using different graphical forms, we find not only the highly skewed distributions of waiting times highlighted in previous studies but also clear circadian rhythm. The relative visibility of these two components depends strongly on which graphical form is adopted and the range of time scales. We use a simple model to reconstruct the observed behaviour and discuss the implications of this for forwarding efficiency

    Estimating the location of the open-closed magnetic field line boundary from auroral images

    Get PDF
    The open-closed magnetic field line boundary (OCB) delimits the region of open magnetic flux forming the polar cap in the Earth’s ionosphere. We present a reliable, automated method for determining the location of the poleward auroral luminosity boundary (PALB) from far ultraviolet (FUV) images of the aurora, which we use as a proxy for the OCB. This technique models latitudinal profiles of auroral luminosity as both a single and double Gaussian function with a quadratic background to produce estimates of the PALB without prior knowledge of the level of auroral activity or of the presence of bifurcation in the auroral oval. We have applied this technique to FUV images recorded by the IMAGE satellite from May 2000 until August 2002 to produce a database of over a million PALB location estimates, which is freely available to download. From this database, we assess and illustrate the accuracy and reliability of this technique during varying geomagnetic conditions. We find that up to 35% of our PALB estimates are made from double Gaussian fits to latitudinal intensity profiles, in preference to single Gaussian fits, in nightside magnetic local time (MLT) sectors. The accuracy of our PALBs as a proxy for the location of the OCB is evaluated by comparison with particle precipitation boundary (PPB) proxies from the DMSP satellites. We demonstrate the value of this technique in estimating the total rate of magnetic reconnection from the time variation of the polar cap area calculated from our OCB estimates

    Identifying the magnetotail lobes with Cluster magnetometer data

    Get PDF
    We describe a novel method for identifying times when a spacecraft is in Earth’s magnetotail lobes solely using magnetometer data. We propose that lobe intervals can be well identified as times when the magnetic field is strong and relatively invariant, defined using thresholds in the magnitude of BX and the standard deviation σ of the magnetic field magnitude. Using data from the Cluster spacecraft at downtail distances greater than 8 RE during 2001–2009, we find that thresholds of 30 nT and 3.5 nT, respectively, optimize agreement with a previous, independently derived lobe identification method that used both magnetic and plasma data over the same interval. Specifically, our method has a moderately high accuracy (66%) and a low probability of false detection (11%) in comparison to the other method. Furthermore, our method identifies the lobe on many other occasions when the previous method was unable to make any identification and yields longer continuous intervals in the lobe than the previous method, with intervals at the 90th percentile being triple the length. Our method also allows for analyses of the lobes outside the time span of the previous method

    The influence of substorms on extreme rates of change of the surface horizontal magnetic field in the United Kingdom

    Get PDF
    We investigate how statistical properties of the rate of change R of the surface horizontal magnetic field in the United Kingdom differ during substorm expansion and recovery phases compared with other times. R is calculated from 1‐min magnetic field data from three INTERMAGNET observatories—Lerwick, Eskdalemuir, and Hartland and between 1996 and 2014—nearly two solar cycles. Substorm expansion and recovery phases are identified from the SuperMAG Lower index using the Substorm Onsets and Phases from Indices of the Electrojet method. The probability distribution of R is decomposed into categories of whether during substorm expansion and recovery phases, in enhanced convection intervals, or at other times. From this, we find that 54–56% of all extreme R values (defined as above the 99.97th percentile) occur during substorm expansion or recovery phases. By similarly decomposing the magnetic local time variation of the occurrence of large R values (>99th percentile), we deduce that 21–25% of large R during substorm expansion and recovery phases are attributable to the Disturbance Polar (DP)1 magnetic perturbation caused by the substorm current wedge. This corresponds to 10–14% of all large R in the entire data set. These results, together with asymptotic trends in occurrence probabilities, may indicate the two‐cell DP2 magnetic perturbation caused by magnetospheric convection as the dominant source of hazardous R > 600 nT/min that is potentially damaging to the U.K. National Grid. Thus, further research is needed to understand and model DP2, its mesoscale turbulent structure, and substorm feedbacks in order that GIC impact on the National Grid may be better understood and predicted

    IMF-driven change to the Antarctic tropospheric temperature due to the global atmospheric electric circuit

    Get PDF
    We use National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data to investigate the Antarctic mean tropospheric temperature anomaly associated with changes in the dawn-dusk component By of the interplanetary magnetic field (IMF). We find that the mean tropospheric temperature anomaly for geographical latitudes ≤ −70° peaks at about 0.7 K and is statistically significant at the 5% level between air pressures of 1 000 and 500 hPa (∼0.1–5.6 km altitude above sea level) and for time lags with respect to the IMF of up to 7 days. The peak values of the air temperature anomaly occur at a greater time lag at 500 hPa (∼5.6 km) than at 1 000 - 600 hPa (∼0.1–4.2 km), which may indicate that the signature propagates vertically. The characteristics of prompt response and possible vertical propagation within the troposphere have previously been seen in the correlation between the IMF and high-latitude air pressure anomalies, known as the Mansurov effect, at higher statistical significances (1%). For time lags between the IMF and the troposphere of 0–6 days and altitudes between 1 000 and 700 hPa (∼0.1–3 km), the relationship between highly statistically significant (1% level) geopotential height anomaly values and the corresponding air temperature anomaly values is consistent with the standard lapse rate in atmospheric temperature. We conclude that we have identified the temperature signature of the Mansurov effect in the Antarctic troposphere. Since these tropospheric anomalies have been associated with By-driven anomalies in the electric potential of the ionosphere, we further conclude that they are caused by IMF-induced changes to the global atmospheric electric circuit (GEC). Our results support the view that variations in the ionospheric potential act on the troposphere, possibly via the action of consequent variations in the downwards current of the GEC on tropospheric clouds

    On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events

    Get PDF
    With the arrival of the Cassini spacecraft at Saturn in July 2004, there have been quasi-continuous observations of Saturn kilometric radiation (SKR) emissions. Exploration of the nightside magnetosphere has revealed evidence of plasmoid-like magnetic structures and other phenomena indicative of the Kronian equivalent of terrestrial substorms. In general, there is a good correlation between the timing of reconnection events and enhancements in the auroral SKR emission. Eight of nine reconnection events studied occur at SKR phases where the SKR power would be expected to be rising with time. Thus, while the recurrence rate of substorm-like events at Saturn is likely much longer than the planetary rotation timescale, the events are favored to occur at a particular phase of the rotation. We show three examples in each of which the SKR spectrum extends to lower frequencies than usual. This can be interpreted as an expansion of the auroral particle acceleration region to higher altitudes along magnetic field lines as a direct consequence of an increase in the magnetosphere-ionosphere current density driven by substorm-like events. We then conduct a survey of such low-frequency extensions during the equatorial orbits of 2005-2006 and place some constraints on visibility of these radio emissions

    Distributions of Birkeland current density observed by AMPERE are heavy‐tailed or long‐tailed

    Get PDF
    We analyze probability distributions of Birkeland current densities measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We find that the distributions are leptokurtic rather than normal and they are sometimes heavy-tailed. We fit q-exponential functions to the distributions and use these to estimate where the largest currents are likely to occur. The shape and scale parameters of the fitted q-exponential distribution vary with location: The scale parameter maximises for current densities with the same polarity and in the same location as the average Region 1 current, whereas the shape parameter maximises for current densities with the same polarity and in the same location as the average Region 2 current. We find that current densities |J|≥ 0.2 μA m−2 are most likely to occur in the average Region 1 current region, and second most likely to occur in the average Region 2 current region. However, for extreme currents (|J|≥ 4.0 μA m−2), we find that the most likely location is colocated with the average Region 2 current region on the dayside, at a colatitude of 18° − 22°

    How well can we estimate Pedersen conductance from the THEMIS white-light all-sky cameras?

    Get PDF
    We show that a THEMIS (Time History of Events and Macroscale Interactions during Substorms) white‐light all‐sky imager (ASI) can estimate Pedersen conductance with an uncertainty of 3 mho or 40%. Using a series of case studies over a wide range of geomagnetic activity, we compare estimates of Pedersen conductance from the backscatter spectrum of the Poker Flat Advanced Modular Incoherent Scatter Radar (ISR) with auroral intensities. We limit this comparison to an area bounding the radar measurements and within a limited area close to, (but off) imager zenith. We confirm a linear relationship between conductance and the square root of auroral intensity predicted from a simple theoretical approximation. Hence we extend a previous empirical result found for green‐line emissions to the case of white‐light off‐zenith emissions. The difference between the radar conductance and the best‐fit relationship has a mean of ‐0.76 ± 4.8 mho, and a relative mean difference of 21% ± 78%. The uncertainties are reduced to ‐0.72 ± 3.3 mho and 0% ± 40% by averaging conductance over 10 minutes, which we attribute to the time that auroral features take to move across the imager field being greater than the 1 minute resolution of the radar data. Our results demonstrate and calibrate the use of THEMIS ASIs for estimating Pedersen conductance. This technique allows the extension of estimates of Pedersen conductance from ISRs to derive continental‐scale estimates on scales of ~1‐10 minutes and ~100 km2. It thus complements estimates from low‐altitude satellites, satellite auroral imagers, and ground‐based magnetometers

    Tailward propagation of magnetic energy density variations With respect to substorm onset times

    Get PDF
    During geomagnetic substorms, around 1015 J of energy is extracted from the solar wind and processed by the Earth's magnetosphere. Prior to the onset of substorm expansion phases, this energy is thought to be largely stored as an increase in the magnetic field in the magnetotail lobes. However, how, when, and where this energy is stored and released within the magnetotail is unclear. Using data from the Cluster spacecraft and substorm onsets from Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE), we examine the variation in the lobe magnetic energy density with respect to substorm onset for 541 isolated onsets. Based on a cross‐correlation analysis and a simple model, we deduce the following: On average, the magnetic energy density increases approximately linearly in the hour preceding onset and decreases at a similar rate after onset. The timing and magnitude of these changes varies with downtail distance, with observations from the mid‐tail ( urn:x-wiley:jgra:media:jgra54303:jgra54303-math-0001) showing larger changes in the magnetic energy density that occur ∼20 min after changes in the near‐tail ( urn:x-wiley:jgra:media:jgra54303:jgra54303-math-0002). The decrease in energy density in the near‐tail region is observed before the ground onset identified by SOPHIE, implying that the substorm is driven from the magnetotail and propagates into the ionosphere. The implication of these results is that energy in the near‐tail region is released first during the substorm expansion phase, with energy conversion propagating away from the Earth with time