22 research outputs found

    Catestatin Improves Post-Ischemic Left Ventricular Function and Decreases Ischemia/Reperfusion Injury in Heart

    Get PDF
    The Chromogranin A (CgA)-derived anti-hypertensive peptide catestatin (CST) antagonizes catecholamine secretion, and is a negative myocardial inotrope acting via a nitric oxide-dependent mechanism. It is not known whether CST contributes to ischemia/reperfusion injury or is a component of a cardioprotective response to limit injury. Here, we tested whether CST by virtue of its negative inotropic activity improves post-ischemic cardiac function and cardiomyocyte survival. Three groups of isolated perfused hearts from adult Wistar rats underwent 30-min ischemia and 120-min reperfusion (I/R, Group 1), or were post-conditioned by brief ischemic episodes (PostC, 5-cycles of 10-s I/R at the beginning of 120-min reperfusion, Group 2), or with exogenous CST (75 nM for 20 min, CST-Post, Group-3) at the onset of reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated with nitroblue-tetrazolium staining. The CST (5 nM) effects were also tested in simulated ischemia/reperfusion experiments on cardiomyocytes isolated from young-adult rats, evaluating cell survival with propidium iodide labeling. Infarct size was 61 ± 6% of risk area in hearts subjected to I/R only. PostC reduced infarct size to 34 ± 5%. Infarct size in CST-Post was 36 ± 3% of risk area (P < 0.05 respect to I/R). CST-Post reduced post-ischemic rise of diastolic LVP, an index of contracture, and significantly improved post-ischemic recovery of developed LVP. In isolated cardiomyocytes, CST increased the cell viability rate by about 65% after simulated ischemia/reperfusion. These results suggest a novel cardioprotective role for CST, which appears mainly due to a direct reduction of post-ischemic myocardial damages and dysfunction, rather than to an involvement of adrenergic terminals and/or endothelium

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease

    Common variants in Alzheimer's disease and risk stratification by polygenic risk scores.

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease

    Assessment of cerebral autoregulation in patients undergoing anaesthesia with propofol: a comparison among spontaneous variability methods

    No full text
    Cerebral autoregulation (CA) is a fundamental homeostatic mechanism that maintains cerebral blood flow (CBF) within a constant range despite blood pressure variations. In this work, two different approaches for assessing CA are compared, i.e. the autoregulation index (ARI) and dynamic entropy measures. The arterial pressure and the CBF velocity were acquired on eighteen subjects undergoing coronary artery bypass graft surgery, before induction of general anaesthesia with propofol and during anaesthesia. The ARI-based method confirmed the known result that CA remains unchanged with propofol. Entropy measures led to complementary findings, suggesting an increased dependence of cerebral blood flow dynamics on systemic pressure, probably due to the effect of mechanical breathing during surgery

    Correlation between Baroreflex Sensitivity and Cerebral Autoregulation Index in Healthy Subjects

    No full text
    Despite the acknowledged interaction between baroreflex and cerebral autoregulation (CA), their functional relationship remains controversial. The study investigates this relationship in a healthy population undergoing an orthostatic challenge. Thirteen healthy subjects (age: 27pm 8 yrs; 5 males) underwent electrocardiogram, arterial pressure (AP) and cerebral blood flow velocity (CBFV) recordings at supine resting (REST) and during 60° head-up tilt (TILT). CA was assessed via the autoregulation index (ARI) from spontaneous variations of mean AP and mean CBFV. The cardiac control and baroreflex were evaluated via frequency domain and transfer function analyses applied to systolic AP and heart period variability. We found at REST a borderline positive correlation between ARI and indexes of sympathetic modulation and a stronger negative correlation with markers of vagal modulation and baroreflex sensitivity. Correlations were lost during TILT. Our data support the hypothesis that, when sympathetic drive is limited, vagal control and cardiac baroreflex have a compensatory effect on CA and sympathetic control could play a favorable role on CA

    On the Different Abilities of Cross-Sample Entropy and K-Nearest-Neighbor Cross-Unpredictability in Assessing Dynamic Cardiorespiratory and Cerebrovascular Interactions

    No full text
    Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory and cerebrovascular regulations. The computation of these indices requires techniques describing nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods for the assessment of dynamic HP–R and MCBv–MAP interactions, namely the cross-sample entropy (CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional linear causal, and lag-zero linear noncausal models, and then over experimental data acquired from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15, and 20 breaths·minute−1 as well as from 13 subjects at supine rest and during 60° head-up tilt. Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal structure, while performances are similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling

    Morphometric Characterization of an Ex Vivo Porcine Model of Functional Tricuspid Regurgitation

    No full text
    Emerging treatments for tricuspid valve (TV) regurgitation require realistic TV pathological models for preclinical testing. The aim of this work was to investigate structural features of fresh and defrosted porcine right-heart samples as models of mild and severe functional tricuspid regurgitation (FTR) condition in ex-vivo pulsatile flow platform. Ten fresh hearts were tested ex-vivo under steady and pulsatile flow in typical right-heart loading conditions. Hemodynamics and 3D echocardiographic imaging of TV and right ventricle (RV) were acquired. Hearts were then kept frozen for 14 days, defrosted, and tested again with the same protocol. Morphometric parameters of TV and RV were derived from 3D reconstructions based on echo data. Fresh samples showed a slightly dilated TV morphology, with coaptation gaps among the leaflets. Sample freezing induced worsening of TV insufficiency, with significant (p &lt; 0.05) increases in annulus size (annulus area and perimeter 7.7-3.1% respectively) and dilation of RV (9.5%), which led to an increase in tenting volume (123.7%). These morphologic alterations reflected into a significant increment of regurgitation fraction (27%). Together, such results suggest that fresh porcine heart samples may be a reliable ex-vivo model of mild FTR condition, which can be enhanced through freezing/thawing treatment to model a severe pathological condition

    Lack of association between heart period variability asymmetry and respiratory sinus arrhythmia in healthy and chronic heart failure individuals

    No full text
    Temporal asymmetry is a peculiar aspect of heart period (HP) variability (HPV). HPV asym- metry (HPVA) is reduced with aging and pathology, but its origin is not fully elucidated. Given the impact of respiration on HPV resulting in the respiratory sinus arrhythmia (RSA) and the asymmetric shape of the respiratory pattern, a possible link between HPVA and RSA might be expected. In this study we tested the hypothesis that HPVA is significantly associated with RSA and asymmetry of the respiratory rhythm. We studied 42 middle-aged healthy (H) subjects, and 56 chronic heart failure (CHF) patients of whom 26 assigned to the New York Heart Association (NYHA) class II (CHF-II) and 30 to NYHA class III (CHF-III). Electrocardiogram and lung volume were monitored for 8 minutes during spontaneous breathing (SB) and controlled breathing (CB) at 15 breaths/minute. The ratio of inspiratory (INSP) to expiratory (EXP) phases, namely the I/E ratio, and RSA were calculated. HPVA was estimated as the percentage of negative HP variations, traditionally measured via the Porta’s index (PI). Departures of PI from 50% indicated HPVA and its significance was tested via surrogate data. We found that RSA increased during CB and I/E ratio was smaller than 1 in all groups and experimental conditions. In H subjects the PI was about 50% during SB and it increased significantly during CB. In both CHF-II and CHF-III groups the PI was about 50% during SB and remained unmodified during CB. The PI was uncorrelated with RSA and I/E ratio regardless of the experimental condition and group. Pooling together data of different experimental conditions did not affect conclusions. Therefore, we conclude that the HPVA cannot be explained by RSA and/or I/E ratio, thus representing a peculiar feature of the cardiac control that can be aroused in middle-aged H individuals via CB

    Coronary Perfusion After Valve-in-Valve Transcatheter Aortic Valve Implantation in Small Aortic Root: In Vitro Experimental Assessment

    No full text
    Coronary flow obstruction following transcatheter aortic valve-in-valve implantation (VIV-TAVI) is associated with a high mortality risk. The aim of this work was to quantify the coronary perfusion after VIV-TAVI in a high-risk aortic root anatomy. 3D printed models of small aortic root were used to simulate the implantation of a TAVI prosthesis (Portico 23) into surgical prostheses ( Trifecta 19 and 21). The aortic root models were tested in a pulsatile in vitro bench setup with a coronary perfusion simulator. The tests were performed at baseline and post-VIV-TAVI procedure in aligned and misaligned commissural configurations under simulated hemodynamic rest and exercise conditions. The experimental design provided highly controllable and repeatable flow and pressure conditions. The left and right coronary mean flow did not differ significantly at pre- and post-VIV-TAVI procedure in any tested configurations. The commissural misalignment did not induce any significant alterations to the coronary flow

    Exploring metrics for the characterization of the cerebral autoregulation during head-up tilt and propofol general anesthesia

    No full text
    Techniques grounded on the simultaneous utilization of Tiecks' second order differential equations and spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV), recorded from middle cerebral arteries through a transcranial Doppler device, provide a characterization of cerebral autoregulation (CA) via the autoregulation index (ARI). These methods exploit two metrics for comparing the measured MCBFV series with the version predicted by Tiecks' model: normalized mean square prediction error (NMSPE) and normalized correlation rho. The aim of this study is to assess the two metrics for ARI computation in 13 healthy subjects (age: 27 &amp; PLUSMN; 8 yrs., 5 males) at rest in supine position (REST) and during 60 head-up tilt (HUT) and in 19 patients (age: 64 &amp; PLUSMN; 8 yrs., all males), scheduled for coronary artery bypass grafting, before (PRE) and after (POST) propofol general anesthesia induction. Analyses were carried out over the original MAP and MCBFV pairs and surrogate unmatched couples built individually via time-shifting procedure. We found that: i) NMSPE and rho metrics exhibited similar performances in passing individual surrogate test; ii) the two metrics could lead to different ARI estimates; iii) CA was not different during HUT or POST compared to baseline and this conclusion held regardless of the technique and metric for ARI estimation. Results suggest a limited impact of the sympathetic control on CA
    corecore