238 research outputs found

    Joan Valls i la m√ļsica

    Get PDF

    Bioprocessos industrials : biocombustibles

    Get PDF
    La biotecnologia ha tingut ja un important impacte en la millora o substituci√≥ de processos qu√≠mics industrials. En aquest cap√≠tol es revisen els aspectes m√©s importants de l'anomenada biotecnologia blanca, i les seves principals aplicacions en diferents sectors: enzims industrials, ind√ļstria quimicofarmac√®utica, producci√≥ de biopol√≠mers i biocombustibles.Biotecnology has already made an important impact in the improvement or replacement of industrial chemical processes. In this chapter, the most important aspects of White Biotechnology are reviewed, as well as the main applications in different sectors: industrial enzymes, chemico-phamaceutical industry, biopolymer production, and biofuels

    Controlled composite processing based on off-stoichiometric thiol-epoxy dual-curing systems with sequential heat release (SHR)

    Get PDF
    Control of curing rate and exothermicity during processing of thermosetting composite materials is essential in order to minimize the formation of internal stresses leading to mechanical and dimensional defects in the samples, especially in thick composite samples. It was recently proposed that sequential heat release, an approach based on the kinetic control of the curing sequence of dual-curing thermosets, would enable a step-wise release of the reaction heat and therefore a better control of conversion and temperature profiles during the crosslinking stage. In this article, it is shown experimental proof of this concept obtained by means of an instrumented mold that can be used for the processing of small samples with and without carbon fiber reinforcement. Safe processing scenarios have been defined by numerical simulation using a simplified two-dimensional heat transfer model and validated experimentally.Peer ReviewedPostprint (author's final draft

    Comparison of splice sites in mammals and chicken.

    Full text link
    We have carried out an initial analysis of the dynamics of the recent evolution of the splice-sites sequences on a large collection of human, rodent (mouse and rat), and chicken introns. Our results indicate that the sequences of splice sites are largely homogeneous within tetrapoda. We have also found that orthologous splice signals between human and rodents and within rodents are more conserved than unrelated splice sites, but the additional conservation can be explained mostly by background intron conservation. In contrast, additional conservation over background is detectable in orthologous mammalian and chicken splice sites. Our results also indicate that the U2 and U12 intron classes seem to have evolved independently since the split of mammals and birds; we have not been able to find a convincing case of interconversion between these two classes in our collections of orthologous introns. Similarly, we have not found a single case of switching between AT-AC and GT-AG subtypes within U12 introns, suggesting that this event has been a rare occurrence in recent evolutionary times. Switching between GT-AG and the noncanonical GC-AG U2 subtypes, on the contrary, does not appear to be unusual; in particular, T to C mutations appear to be relatively well tolerated in GT-AG introns with very strong donor sites

    Comparison of the nanostructure and mechanical performance of highly exfoliated epoxy-clay nanocomposites prepared by three different protocols

    Get PDF
    Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para-amino phenol (TGAP), have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT), and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methylamine complex, BF3·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF3·MEA into the clay galleries of nanocomposites containing 2 wt% MMT.Peer ReviewedPostprint (published version

    Laboratory 3.0: manufacturing technologies laboratory virtualization with a student-centred methodology

    Get PDF
    This paper presents a blended-learning strategy for improving the teaching method applied in the laboratory subject Manufacturing Technologies. The teaching method has been changed from a predominantly teacher-centred to an active learning system with a student-centred focus and e-learning activities. In face-to-face classes, a game-based learning platform has been used. This methodology ensured engaging classes at the same time that provided a useful live feedback for students and teachers. The virtualization of the laboratory was achieved by two different e-learning activities, self-assessment tasks and video clips. These e-learning tools have been used not only to improve the students’ learning but also to enhance their motivation. The results from academic outputs show a significant improvement after the new blended learning method is applied. Moreover, a student satisfaction survey shows the positive impact of the methodology on the students’ engagement and motivationPeer Reviewe

    Laboratori 3.0: virtualització del laboratori amb una metodologia centrada en l'estudiant

    Get PDF
    This paper presents an improvement introduced to a laboratory subject by means of a student - centered blended - learning teaching strategy. The implemented virtual tools (videos and questionnaires) help to prepare the practical sessions and allow the sel f - assessment before and after each practical session. Students have shown a great satisfaction with the method. The analysis of the qualifications obtained has allowed an assessment of the degree of correlation between the different techniques used.Postprint (published version

    An assessment of gene prediction accuracy in large DNA sequences

    Full text link
    One of the first useful products from the human genome will be a set of predicted genes. Besides its intrinsic scientific interest, the accuracy and completeness of this data set is of considerable importance for human health and medicine. Though progress has been made on computational gene identification in terms of both methods and accuracy evaluation measures, most of the sequence sets in which the programs are tested are short genomic sequences, and there is concern that these accuracy measures may not extrapolate well to larger, more challenging data sets. Given the absence of experimentally verified large genomic data sets, we constructed a semiartificial test set comprising a number of short single-gene genomic sequences with randomly generated intergenic regions. This test set, which should still present an easier problem than real human genomic sequence, mimics the ‚ąľ200kb long BACs being sequenced. In our experiments with these longer genomic sequences, the accuracy ofGENSCAN, one of the most accurate ab initio gene prediction programs, dropped significantly, although its sensitivity remained high. Conversely, the accuracy of similarity-based programs, such as GENEWISE,PROCRUSTES, andBLASTX, was not affected significantly by the presence of random intergenic sequence, but depended on the strength of the similarity to the protein homolog. As expected, the accuracy dropped if the models were built using more distant homologs, and we were able to quantitatively estimate this decline. However, the specificities of these techniques are still rather good even when the similarity is weak, which is a desirable characteristic for driving expensive follow-up experiments. Our experiments suggest that though gene prediction will improve with every new protein that is discovered and through improvements in the current set of tools, we still have a long way to go before we can decipher the precise exonic structure of every gene in the human genome using purely computational methodology

    New epoxy thermosets derived from clove oil prepared by epoxy-amine curing

    Get PDF
    New thermosets from a triglycidyl eugenol derivative (3EPOEU) as a renewable epoxy monomer were obtained by an epoxy-amine curing process. A commercially-available Jeffamine¬ģ and isophorone diamine, both obtained from renewable resources, were used as crosslinking agents, and the materials obtained were compared with those obtained from a standard diglycidylether of bisphenol A (DGEBA). The evolution of the curing process was studied by differential scanning calorimetry and the materials obtained were characterized by means of calorimetry, thermogravimetry, thermodynamomechanical analysis, stress‚Äďstrain tests and microindentation. 3EPOEU formulations were slightly less reactive, and the thermosets obtained showed higher Tgs than those prepared from DGEBA, since they had higher crosslinking density than formulations with DGEBA because of the more compact structure and higher functionality of the eugenol derivative. 3EPOEU thermosets showed good thermal stability and mechanical properties. The results obtained in this study allow us to conclude that the triglycidyl derivative of eugenol, 3EPOEU, is a safe and environmentally friendly alternative to DGEBA.Postprint (published version

    Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels

    Get PDF
    Background: Analysis of the cell operation at the metabolic level requires collecting data of different types and to determine their confidence level. In addition, the acquired information has to be combined in order to obtain a consistent operational view. In the case of Pichia pastoris, information of its biomass composition at macromolecular and elemental level is scarce particularly when different environmental conditions, such as oxygen availability or, genetic backgrounds (e.g. recombinant protein production vs. non production conditions) are compared. Results: P. pastoris cells growing in carbon-limited chemostat cultures under different oxygenation conditions (% O2 in the bioreactor inlet gas: 21%, 11% and 8%, corresponding to normoxic, oxygen-limiting and hypoxic conditions, respectively), as well as under recombinant protein (antibody fragment, Fab) producing and non-producing conditions, were analyzed from different points of view. On the one hand, the macromolecular and elemental composition of the biomass was measured using different techniques at the different experimental conditions and proper reconciliation techniques were applied for gross error detection of the measured substrates and products conversion rates. On the other hand, fermentation data was analyzed applying elemental mass balances. This allowed detecting a previously missed by-product secreted under hypoxic conditions, identified as arabinitol (aka. arabitol). After identification of this C5 sugar alcohol as a fermentation by-product, the mass balances of the fermentation experiments were validated. Conclusions: After application of a range of analytical and statistical techniques, a consistent view of growth parameters and compositional data of P. pastoris cells growing under different oxygenation conditions was obtained. The obtained data provides a first view of the effects of oxygen limitation on the physiology of this microorganism, while recombinant Fab production seems to have little or no impact at this level of analysis. Furthermore, the results will be highly useful in other complementary quantitative studies of P. pastoris physiology, such as metabolic flux analysis
    • ‚Ķ
    corecore