26 research outputs found

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Characterising risk of in-hospital mortality following cardiac arrest using machine learning:A retrospective international registry study

    Get PDF
    BackgroundResuscitated cardiac arrest is associated with high mortality; however, the ability to estimate risk of adverse outcomes using existing illness severity scores is limited. Using in-hospital data available within the first 24 hours of admission, we aimed to develop more accurate models of risk prediction using both logistic regression (LR) and machine learning (ML) techniques, with a combination of demographic, physiologic, and biochemical information.Methods and findingsPatient-level data were extracted from the Australian and New Zealand Intensive Care Society (ANZICS) Adult Patient Database for patients who had experienced a cardiac arrest within 24 hours prior to admission to an intensive care unit (ICU) during the period January 2006 to December 2016. The primary outcome was in-hospital mortality. The models were trained and tested on a dataset (split 90:10) including age, lowest and highest physiologic variables during the first 24 hours, and key past medical history. LR and 5 ML approaches (gradient boosting machine [GBM], support vector classifier [SVC], random forest [RF], artificial neural network [ANN], and an ensemble) were compared to the APACHE III and Australian and New Zealand Risk of Death (ANZROD) predictions. In all, 39,566 patients from 186 ICUs were analysed. Mean (±SD) age was 61 ± 17 years; 65% were male. Overall in-hospital mortality was 45.5%. Models were evaluated in the test set. The APACHE III and ANZROD scores demonstrated good discrimination (area under the receiver operating characteristic curve [AUROC] = 0.80 [95% CI 0.79–0.82] and 0.81 [95% CI 0.8–0.82], respectively) and modest calibration (Brier score 0.19 for both), which was slightly improved by LR (AUROC = 0.82 [95% CI 0.81–0.83], DeLong test, p 0.001). Discrimination was significantly improved using ML models (ensemble and GBM AUROCs = 0.87 [95% CI 0.86–0.88], DeLong test, p 0.001), with an improvement in performance (Brier score reduction of 22%). Explainability models were created to assist in identifying the physiologic features that most contributed to an individual patient’s survival. Key limitations include the absence of pre-hospital data and absence of external validation.ConclusionsML approaches significantly enhance predictive discrimination for mortality following cardiac arrest compared to existing illness severity scores and LR, without the use of pre-hospital data. The discriminative ability of these ML models requires validation in external cohorts to establish generalisability.</div

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease

    State of the climate in 2014